Interaction of Heavy Metal Ions with Carbon and Iron Based Particles

. 2014 Mar 18 ; 7 (3) : 2242-2256. [epub] 20140318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28788566

Due to the rapid development of industry and associated production of toxic waste, especially heavy metals, there is a great interest in creating and upgrading new sorption materials to remove these pollutants from the environment. This study aims to determine the effectiveness of different carbon forms (graphene, expanded carbon, multi-wall nanotubes) and paramagnetic particles (Fe₂O₃) for adsorption of cadmium(II), lead(II), and copper(II) on its surface, with different interaction time from 1 min to 24 h. The main attention is paid to the detection of these metals using differential pulse voltammetry. Based on the obtained results, graphene and Fe₂O₃ are found to be good candidates for removal of heavy metals from the environment.

Zobrazit více v PubMed

Adam V., Zehnalek J., Petrlova J., Potesil D., Sures B., Trnkova L., Jelen F., Vitecek J., Kizek R. Phytochelatin modified electrode surface as a sensitive heavy-metal ion biosensor. Sensors. 2005;5:70–84.

Fisher I.J., Pain D.J., Thomas V.G. A review of lead poisoning from ammunition sources in terrestrial birds. Biol. Conserv. 2006;131:421–432.

Szentmihalyi K., Feher E., Vinkler P., Kery A., Blazovics A. Metabolic alterations of toxic and nonessential elements by the treatment of Sempervivum tectorum extract in a hyperlipidemic rat model. Toxicol. Pathol. 2004;32:50–57. PubMed

Hynek D., Prasek J., Pikula J., Adam V., Hajkova P., Krejcova L., Trnkova L., Sochor J., Pohanka M., Hubalek J., et al. Electrochemical analysis of lead toxicosis in vultures. Int. J. Electrochem. Sci. 2011;6:5980–6010.

Kong N., Huang X.D., Cui L., Liu J.Q. Surface modified graphene for heavy metal ions adsorption. Sci. Adv. Mater. 2013;5:1083–1089.

Shaw M.J., Haddad P.R. The determination of trace metal pollutants in enviromental matrices using ion chromatography. Environ. Int. 2004;30:403–431. PubMed

Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013;42:5682–5689. PubMed

Wu W.Q., Yang Y., Zhou H.H., Ye T.T., Huang Z.Y., Liu R., Kuang Y.F. Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut. 2013;224:1372:1–1372:8.

Yantasee W., Lin Y.H., Hongsirikarn K., Fryxell G.E., Addleman R., Timchalk C. Electrochemical sensors for the detection of lead and other toxic heavy metals: The next generation of personal exposure biomonitors. Environ. Health Perspect. 2007;115:1683–1690. PubMed PMC

Zhao G.X., Ren X.M., Gao X., Tan X.L., Li J.X., Chen C.L., Huang Y.Y., Wang X.K. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011;40:10945–10952. PubMed

Jones M.G., Blonder R., Gardner G.E., Albe V., Falvo M., Chevrier J. Nanotechnology and nanoscale science: Educational challenges. Int. J. Sci. Ed. 2013;35:1490–1512.

Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. PubMed

Hsing I.M., Xu Y., Zhao W.T. Micro- and nano-magnetic particles for applications in biosensing. Electroanalysis. 2007;19:755–768.

Sitko R., Zawisza B., Malicka E. Graphene as a new sorbent in analytical chemistry. Trends Anal. Chem. 2013;51:33–43.

Krejcova L., Hynek D., Kopel P., Adam V., Hubalek J., Trnkova L., Kizek R. Paramagnetic particles isolation of influenza oligonucleotide labelled with CdS QDs. Chromatographia. 2013;76:355–362.

Tan Y.K., Best S.L., Donnelly C., Olweny E., Kapur P., Mir S.A., Gnade B., McLeroy S., Pearle M.S., Cadeddu J.A. Novel iron oxide microparticles used to render stone fragments paramagnetic: Assessment of toxicity in a murine model. J. Urol. 2012;188:1972–1977. PubMed

Vojtisek M., Tarn M.D., Hirota N., Pamme N. Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 2012;13:625–635.

Krejcova L., Huska D., Hynek D., Kopel P., Adam V., Hubalek J., Trnkova L., Kizek R. Using of paramagnetic microparticles and quantum dots for isolation and electrochemical detection of influenza viruses’ specific nucleic acids. Int. J. Electrochem. Sci. 2013;8:689–702.

Pamme N. On-chip bioanalysis with magnetic particles. Curr. Opin. Chem. Biol. 2012;16:436–443. PubMed

Ng A.H.C., Choi K., Luoma R.P., Robinson J.M., Wheeler A.R. Digital microfluidic magnetic separation for particle-based immunoassays. Anal. Chem. 2012;84:8805–8812. PubMed

Adam V., Fabrik I., Kohoutkova V., Babula P., Hubalek J., Vrba R., Trnkova L., Kizek R. Automated electrochemical analyzer as a new tool for detection of thiols. Int. J. Electrochem. Sci. 2010;5:429–447.

Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914.

Aragay G., Pons J., Merkoci A. Recent trends in Macro-, Micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011;111:3433–3458. PubMed

Pattee O.H., Carpenter J.W., Fritts S.H., Rattner B.A., Wiemeyer S.N., Royle J.A., Smith M.R. Lead poisoning in captive Andean condors (Vultur gryphus) J. Wildl. Dis. 2006;42:772–779. PubMed

Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochim. Acta. 2006;51:5169–5173.

Korn M.D.A., de Andrade J.B., de Jesus D.S., Lemos V.A., Bandeira M., dos Santos W.N.L., Bezerra M.A., Amorim F.A.C., Souza A.S., Ferreira S.L.C. Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta. 2006;69:16–24. PubMed

Adam V., Krizkova S., Zitka O., Trnkova L., Petrlova J., Beklova M., Kizek R. A determination of apo-metallothionein using adsorptive transfer stripping technique in connection with differential pulse voltammetry. Electroanalysis. 2007;19:339–347.

Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behaviour in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657.

Huska D., Adam V., Babula P., Trnkova L., Hubalek J., Zehnalek J., Havel L., Kizek R. Microfluidic robotic device coupled with electrochemical sensor field for handling of paramagnetic micro-particles as a tool for determination of plant mRNA. Microchim. Acta. 2011;173:189–197.

Krizkova S., Adam V., Petrlova J., Zitka O., Stejskal K., Zehnalek J., Sures B., Trnkova L., Beklova M., Kizek R. A suggestion of electrochemical biosensor for study of platinum(II)-DNA interactions. Electroanalysis. 2007;19:331–338.

Majzlik P., Stransky A., Adam V., Nemec M., Trnkova L., Zehnalek J., Hubalek J., Provaznik I., Kizek R. Influence of Zinc(II) and Copper(II) ions on streptomyces bacteria revealed by electrochemistry. Int. J. Electrochem. Sci. 2011;6:2171–2191.

Prasek J., Adamek M., Hubalek J., Adam V., Trnkova L., Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;6:1498–1512.

Huska D., Zitka O., Krystofova O., Adam V., Babula P., Zehnalek J., Bartusek K., Beklova M., Havel L., Kizek R. Effects of Cadmium(II) ions on early somatic embryos of norway spruce studied by using electrochemical techniques and nuclear magnetic resonance. Int. J. Electrochem. Sci. 2010;5:1535–1549.

Kleckerova A., Sobrova P., Krystofova O., Sochor J., Zitka O., Babula P., Adam V., Docekalova H., Kizek R. Cadmium(II) and Zinc(II) ions effects on maize plants revealed by spectroscopy and electrochemistry. Int. J. Electrochem. Sci. 2011;6:6011–6031.

Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Willey-VCH; Weinheim, Germany: 2003.

Mahdavi S., Jalali M., Afkhami A. Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles. J. Nanopart. Res. 2012;14:1–18. PubMed

Chua K.C., Pumera M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014;43:291–312. PubMed

Chowdhury S.R., Yanful E.K. Kinetics of cadmium(II) uptake by mixed maghemite-magnetite nanoparticles. J. Environ. Manage. 2013;129:642–651. PubMed

Afkhami A., Moosavi R. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 2010;174:398–403. PubMed

Tang S.C.N., Lo I.M.C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013;47:2613–2632. PubMed

Lee S.M., Lalhmunsiama, Choi S.I., Tiwari D. Manganese and iron oxide immobilized activated carbons precursor to dead biomasses in the remediation of cadmium-contaminated waters. Environ. Sci. Pollut. Res. 2013;20:7464–7477. PubMed

Kilianova M., Prucek R., Filip J., Kolarik J., Kvitek L., Panacek A., Tucek J., Zboril R. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere. 2013;93:2690–2697. PubMed

Song J., Kong H., Jang J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J. Colloid Interface Sci. 2011;359:505–511. PubMed

Oliveira L.C.A., Rios R., Fabris J.D., Sapag K., Garg V.K., Lago R.M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci. 2003;22:169–177.

Uheida A., Salazar-Alvarez G., Bjorkman E., Yu Z., Muhammed M. Fe3O4 and gamma-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. J. Colloid Interface Sci. 2006;298:501–507. PubMed

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339–1339.

Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565.

Ying Z., Lin X., Qi Y., Luo J. Preparation and characterization of low-temperature expandable graphite. Mater. Res. Bull. 2008;43:2677–2686.

Prucek R., Tucek J., Kilianova M., Panacek A., Kvitek L., Filip J., Kolar M., Tomankova K., Zboril R. The targeted antibacterial and antifugal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32:4704–4713. PubMed

Cnobloch H., Kellermann W., Nischik H., Pantel K., Sturm F.V. Electrochemical method for the detection of heavy-metal ions in waters. Siemens Res. Dev. Rep. 1979;8:221–226.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

ELISA-like Analysis of Cisplatinated DNA Using Magnetic Separation

. 2015 Jan-Dec ; 2 () : 10. [epub] 20150101

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...