Interaction of Heavy Metal Ions with Carbon and Iron Based Particles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28788566
PubMed Central
PMC5453251
DOI
10.3390/ma7032242
PII: ma7032242
Knihovny.cz E-zdroje
- Klíčová slova
- electrochemical detection, expanded carbon, graphene, heavy metal ions, multi-wall nanotubes, paramagnetic particle, voltammetry,
- Publikační typ
- časopisecké články MeSH
Due to the rapid development of industry and associated production of toxic waste, especially heavy metals, there is a great interest in creating and upgrading new sorption materials to remove these pollutants from the environment. This study aims to determine the effectiveness of different carbon forms (graphene, expanded carbon, multi-wall nanotubes) and paramagnetic particles (Fe₂O₃) for adsorption of cadmium(II), lead(II), and copper(II) on its surface, with different interaction time from 1 min to 24 h. The main attention is paid to the detection of these metals using differential pulse voltammetry. Based on the obtained results, graphene and Fe₂O₃ are found to be good candidates for removal of heavy metals from the environment.
Zobrazit více v PubMed
Adam V., Zehnalek J., Petrlova J., Potesil D., Sures B., Trnkova L., Jelen F., Vitecek J., Kizek R. Phytochelatin modified electrode surface as a sensitive heavy-metal ion biosensor. Sensors. 2005;5:70–84.
Fisher I.J., Pain D.J., Thomas V.G. A review of lead poisoning from ammunition sources in terrestrial birds. Biol. Conserv. 2006;131:421–432.
Szentmihalyi K., Feher E., Vinkler P., Kery A., Blazovics A. Metabolic alterations of toxic and nonessential elements by the treatment of Sempervivum tectorum extract in a hyperlipidemic rat model. Toxicol. Pathol. 2004;32:50–57. PubMed
Hynek D., Prasek J., Pikula J., Adam V., Hajkova P., Krejcova L., Trnkova L., Sochor J., Pohanka M., Hubalek J., et al. Electrochemical analysis of lead toxicosis in vultures. Int. J. Electrochem. Sci. 2011;6:5980–6010.
Kong N., Huang X.D., Cui L., Liu J.Q. Surface modified graphene for heavy metal ions adsorption. Sci. Adv. Mater. 2013;5:1083–1089.
Shaw M.J., Haddad P.R. The determination of trace metal pollutants in enviromental matrices using ion chromatography. Environ. Int. 2004;30:403–431. PubMed
Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013;42:5682–5689. PubMed
Wu W.Q., Yang Y., Zhou H.H., Ye T.T., Huang Z.Y., Liu R., Kuang Y.F. Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut. 2013;224:1372:1–1372:8.
Yantasee W., Lin Y.H., Hongsirikarn K., Fryxell G.E., Addleman R., Timchalk C. Electrochemical sensors for the detection of lead and other toxic heavy metals: The next generation of personal exposure biomonitors. Environ. Health Perspect. 2007;115:1683–1690. PubMed PMC
Zhao G.X., Ren X.M., Gao X., Tan X.L., Li J.X., Chen C.L., Huang Y.Y., Wang X.K. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011;40:10945–10952. PubMed
Jones M.G., Blonder R., Gardner G.E., Albe V., Falvo M., Chevrier J. Nanotechnology and nanoscale science: Educational challenges. Int. J. Sci. Ed. 2013;35:1490–1512.
Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. PubMed
Hsing I.M., Xu Y., Zhao W.T. Micro- and nano-magnetic particles for applications in biosensing. Electroanalysis. 2007;19:755–768.
Sitko R., Zawisza B., Malicka E. Graphene as a new sorbent in analytical chemistry. Trends Anal. Chem. 2013;51:33–43.
Krejcova L., Hynek D., Kopel P., Adam V., Hubalek J., Trnkova L., Kizek R. Paramagnetic particles isolation of influenza oligonucleotide labelled with CdS QDs. Chromatographia. 2013;76:355–362.
Tan Y.K., Best S.L., Donnelly C., Olweny E., Kapur P., Mir S.A., Gnade B., McLeroy S., Pearle M.S., Cadeddu J.A. Novel iron oxide microparticles used to render stone fragments paramagnetic: Assessment of toxicity in a murine model. J. Urol. 2012;188:1972–1977. PubMed
Vojtisek M., Tarn M.D., Hirota N., Pamme N. Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 2012;13:625–635.
Krejcova L., Huska D., Hynek D., Kopel P., Adam V., Hubalek J., Trnkova L., Kizek R. Using of paramagnetic microparticles and quantum dots for isolation and electrochemical detection of influenza viruses’ specific nucleic acids. Int. J. Electrochem. Sci. 2013;8:689–702.
Pamme N. On-chip bioanalysis with magnetic particles. Curr. Opin. Chem. Biol. 2012;16:436–443. PubMed
Ng A.H.C., Choi K., Luoma R.P., Robinson J.M., Wheeler A.R. Digital microfluidic magnetic separation for particle-based immunoassays. Anal. Chem. 2012;84:8805–8812. PubMed
Adam V., Fabrik I., Kohoutkova V., Babula P., Hubalek J., Vrba R., Trnkova L., Kizek R. Automated electrochemical analyzer as a new tool for detection of thiols. Int. J. Electrochem. Sci. 2010;5:429–447.
Adam V., Hanustiak P., Krizkova S., Beklova M., Zehnalek J., Trnkova L., Horna A., Sures B., Kizek R. Palladium biosensor. Electroanalysis. 2007;19:1909–1914.
Aragay G., Pons J., Merkoci A. Recent trends in Macro-, Micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011;111:3433–3458. PubMed
Pattee O.H., Carpenter J.W., Fritts S.H., Rattner B.A., Wiemeyer S.N., Royle J.A., Smith M.R. Lead poisoning in captive Andean condors (Vultur gryphus) J. Wildl. Dis. 2006;42:772–779. PubMed
Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochim. Acta. 2006;51:5169–5173.
Korn M.D.A., de Andrade J.B., de Jesus D.S., Lemos V.A., Bandeira M., dos Santos W.N.L., Bezerra M.A., Amorim F.A.C., Souza A.S., Ferreira S.L.C. Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta. 2006;69:16–24. PubMed
Adam V., Krizkova S., Zitka O., Trnkova L., Petrlova J., Beklova M., Kizek R. A determination of apo-metallothionein using adsorptive transfer stripping technique in connection with differential pulse voltammetry. Electroanalysis. 2007;19:339–347.
Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behaviour in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657.
Huska D., Adam V., Babula P., Trnkova L., Hubalek J., Zehnalek J., Havel L., Kizek R. Microfluidic robotic device coupled with electrochemical sensor field for handling of paramagnetic micro-particles as a tool for determination of plant mRNA. Microchim. Acta. 2011;173:189–197.
Krizkova S., Adam V., Petrlova J., Zitka O., Stejskal K., Zehnalek J., Sures B., Trnkova L., Beklova M., Kizek R. A suggestion of electrochemical biosensor for study of platinum(II)-DNA interactions. Electroanalysis. 2007;19:331–338.
Majzlik P., Stransky A., Adam V., Nemec M., Trnkova L., Zehnalek J., Hubalek J., Provaznik I., Kizek R. Influence of Zinc(II) and Copper(II) ions on streptomyces bacteria revealed by electrochemistry. Int. J. Electrochem. Sci. 2011;6:2171–2191.
Prasek J., Adamek M., Hubalek J., Adam V., Trnkova L., Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;6:1498–1512.
Huska D., Zitka O., Krystofova O., Adam V., Babula P., Zehnalek J., Bartusek K., Beklova M., Havel L., Kizek R. Effects of Cadmium(II) ions on early somatic embryos of norway spruce studied by using electrochemical techniques and nuclear magnetic resonance. Int. J. Electrochem. Sci. 2010;5:1535–1549.
Kleckerova A., Sobrova P., Krystofova O., Sochor J., Zitka O., Babula P., Adam V., Docekalova H., Kizek R. Cadmium(II) and Zinc(II) ions effects on maize plants revealed by spectroscopy and electrochemistry. Int. J. Electrochem. Sci. 2011;6:6011–6031.
Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Willey-VCH; Weinheim, Germany: 2003.
Mahdavi S., Jalali M., Afkhami A. Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles. J. Nanopart. Res. 2012;14:1–18. PubMed
Chua K.C., Pumera M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014;43:291–312. PubMed
Chowdhury S.R., Yanful E.K. Kinetics of cadmium(II) uptake by mixed maghemite-magnetite nanoparticles. J. Environ. Manage. 2013;129:642–651. PubMed
Afkhami A., Moosavi R. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 2010;174:398–403. PubMed
Tang S.C.N., Lo I.M.C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013;47:2613–2632. PubMed
Lee S.M., Lalhmunsiama, Choi S.I., Tiwari D. Manganese and iron oxide immobilized activated carbons precursor to dead biomasses in the remediation of cadmium-contaminated waters. Environ. Sci. Pollut. Res. 2013;20:7464–7477. PubMed
Kilianova M., Prucek R., Filip J., Kolarik J., Kvitek L., Panacek A., Tucek J., Zboril R. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere. 2013;93:2690–2697. PubMed
Song J., Kong H., Jang J. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J. Colloid Interface Sci. 2011;359:505–511. PubMed
Oliveira L.C.A., Rios R., Fabris J.D., Sapag K., Garg V.K., Lago R.M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci. 2003;22:169–177.
Uheida A., Salazar-Alvarez G., Bjorkman E., Yu Z., Muhammed M. Fe3O4 and gamma-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. J. Colloid Interface Sci. 2006;298:501–507. PubMed
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339–1339.
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565.
Ying Z., Lin X., Qi Y., Luo J. Preparation and characterization of low-temperature expandable graphite. Mater. Res. Bull. 2008;43:2677–2686.
Prucek R., Tucek J., Kilianova M., Panacek A., Kvitek L., Filip J., Kolar M., Tomankova K., Zboril R. The targeted antibacterial and antifugal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32:4704–4713. PubMed
Cnobloch H., Kellermann W., Nischik H., Pantel K., Sturm F.V. Electrochemical method for the detection of heavy-metal ions in waters. Siemens Res. Dev. Rep. 1979;8:221–226.
ELISA-like Analysis of Cisplatinated DNA Using Magnetic Separation