Direct Speciation Analysis of Arsenic in Whole Blood and Blood Plasma at Low Exposure Levels by Hydride Generation-Cryotrapping-Inductively Coupled Plasma Mass Spectrometry

. 2017 Sep 19 ; 89 (18) : 9633-9637. [epub] 20170828

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28809551

Grantová podpora
P30 DK056350 NIDDK NIH HHS - United States
P30 ES010126 NIEHS NIH HHS - United States
R01 ES022697 NIEHS NIH HHS - United States

A method for analysis of toxicologically important arsenic species in blood plasma and whole blood by selective hydride generation with cryotrapping (HG-CT) coupled either to atomic absorption spectrometry (AAS) with a quartz multiatomizer or to inductively coupled plasma mass spectrometry (ICPMS) has been validated. Sample preparation, which involved only 5 times dilution with addition of Triton X-100, Antifoam B, and l-cysteine, suppressed excessive foaming in a hydride generator. Calibration slopes for whole blood and blood plasma spiked with arsenate, monomethylarsonate, and dimethylarsinate at 0.25-1 μg L-1 As and 0.025-0.1 μg L-1 As for AAS and ICPMS detection, respectively, did not differ from slopes in aqueous solutions. HG-CT-AAS was used to analyze samples with elevated levels of arsenic species-blood plasma from patients treated with arsenic trioxide for acute promyelocytic leukemia and whole blood from mice fed an arsenic-containing diet. A good agreement between results of the direct analysis and analysis after mild digestion in phosphoric acid proved the good efficiency of the direct HG-CT procedure for the arsenic species in these types of biological samples. In the next step, plasma and whole blood from healthy donors that were spiked with the plasma from leukemia patients at levels of 0.15-0.4 μg L-1 As were analyzed by direct HG-CT-ICPMS. Good recoveries for all species even at these low levels (88-104%) were obtained. Limits of detection in blood and plasma were 0.014 μg L-1 for inorganic arsenic and below 0.002 μg L-1 As for methylated arsenic species. Thus, the ultrasensitive direct HG-CT-ICPMS method is uniquely suited for analyses of blood plasma and whole blood from individuals at low exposure levels.

Zobrazit více v PubMed

Howe CG; Liu XH; Hall MN; Slavkovich V; Ilievski V; Parvez F; Siddique AB; Shahriar H; Uddin MN; Islam T; Graziano JH; Costa M; Gamble MV Environ. Health Persp 2016, 124, 1234–1240. PubMed PMC

Grau-Perez M; Kuo CC; Spratlen M; Thayer KA; Mendez MA; Hamman RF; Dabelea D; Adgate JL; Knowler WC; Bell RA; Miller FW; Liese AD; Zhang CB; Douillet C; Drobná Z; Mayer-Davis EJ; Stýblo M; Navas-Acien A Diabetes Care 2017, 40, 46–53. PubMed PMC

Florez MR; Garcia-Ruiz E; Bolea-Fernandez E; Vanhaecke F; Resano M J.Anal. At. Spectrom 2016, 31, 245–251.

Lu ML; Wang HL; Li XF; Lu XF; Le XC J. Chromatogr. A 2009, 1216, 3985–3991. PubMed

Šlejkovec Z; Falnoga I; Goessler W; van Elteren JT; Raml R; Podgornik H; Černelc P Anal. Chim. Acta 2008, 607, 83–91. PubMed

Delafiori J; Ring G; Furey A Talanta 2016, 153, 306–331. PubMed

Hall M; Gamble M; Slavkovich V; Liu XH; Levy D; Cheng ZQ; Van Geen A; Yunus M; Rahman M; Pisner JR; Graziano J Environ. Health Persp 2007, 115, 1503–1509. PubMed PMC

Mandal BK; Suzuki KT Talanta 2002, 58, 201–235. PubMed

Mandal BK; Ogra Y; Anzai K; Suzuki KT Toxicol. Appl. Pharmacol 2004, 198, 307–318. PubMed

Van Hulle M; Zhang C; Schotte B; Mees L; Vanhaecke F; Vanholder R; Zhang XR; Cornelis R J. Anal. At. Spectrom 2004, 19, 58–64.

Contreras-Acuna M; Garcia-Barrera T; Garcia-Sevillano MA; Gomez-Ariza JL Microchem. J 2014, 112, 56–64.

Ito K; Palmer CD; Steuerwald AJ; Parsons PJ J. Anal. At. Spectrom 2010, 25, 1334–1342.

Todorov TI; Ejnik JW; Mullick FG; Centeno JA Microchim. Acta 2005, 151, 263–268.

Ito K; Goessler W; Gurleyuk H; Wels B; Palmer CD; Verostek MF; Parsons PJ J. Anal. At. Spectrom 2011, 26, 1740–1745.

Paul RL; Davis WC; Yu L; Murphy KE; Guthrie WF; Leber DD; Bryan CE; Vetter TW; Shakirova G; Mitchell G; Kyle DJ; Jarrett JM; Caldwell KL; Jones RL; Eckdahl S; Wermers M; Maras M; Palmer CD; Verostek MF; Geraghty CM; Steuerwald AJ; Parsons PJ J. Radioanal. Nucl. Chem 2014, 299, 1555–1563. PubMed PMC

Matoušek T; Hernández-Zavala A; Svoboda M; Langerova L; Adair BM; Drobná Z; Thomas DJ; Stýblo M; Dědina J Spectrochim. Acta, Part B 2008, 63, 396–406. PubMed PMC

Hernández-Zavala A; Matoušek T; Drobná Z; Paul DS; Walton FS; Adair BM; Dědina J; Thomas DJ; Stýblo M J. Anal. At. Spectrom 2008, 23, 342–351. PubMed PMC

Currier JM; Svoboda M; de Moraes DP; Matousěk T; Dědina J; Stýblo M Chem. Res. Toxicol 2011, 24, 478–480. PubMed PMC

Currier JM; Svoboda M; Matoušek T; Dědina J; Stýblo M Metallomics 2011, 3, 1347–1354. PubMed PMC

Currier J; Saunders JR; Ding L; Bodnar WM; Cable P; Matoušek T; Creed JT; Stýblo M J. Anal. At. Spectrom 2013, 28, 843–852. PubMed PMC

Matoušek T; Currier JM; Trojánková N; Saunders JR; Ishida MC; González-Horta C; Musil S; Mester Z; Stýblo M; Dědina J J. Anal. At. Spectrom 2013, 28, 1456–1465. PubMed PMC

Currier JM; Ishida MC; González-Horta C; Sánchez-Ramírez B; Ballinas-Casarrubias L; Gutiérrez-Torres DS; Ceróon RH; Morales DV; Terrazas FAB; Del Razo LM; García-Vargas GG; Saunders RJ; Drobna Z; Fry RC; Matousěk T; Buse JB; Mendez MA; Loomis D; Stýblo M Environ. Health Persp 2014, 122, 1088–1094. PubMed PMC

Xiang ZD; Snouwaert JN; Kovářová M; Nguyen M; Repenning PW; Latour AM; Cyphert JM; Koller BH Drug Metab. Dispos 2014, 42, 1074–1083. PubMed PMC

Douillet C; Huang MC; Saunders RJ; Dover EN; Zhang C; Stýblo M Arch. Toxicol 2017, 91, 2617–2627. PubMed PMC

Moraes DP; Svoboda M; Matousěk T; Flores EMM; Dědina J J. Anal. At. Spectrom 2012, 27, 1734–1742.

Musil S; Matousěk T; Currier JM; Stýblo M; Dědina J Anal. Chem 2014, 86, 10422–10428. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...