A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO:68081715
Akademie Věd České Republiky
PubMed
33755769
DOI
10.1007/s00216-021-03289-5
PII: 10.1007/s00216-021-03289-5
Knihovny.cz E-zdroje
- Klíčová slova
- Ambient ionization, Arsenic, Cryotrapping, Direct analysis in real time, Hydride generation, Mass spectrometry,
- Publikační typ
- časopisecké články MeSH
Hydride generation (HG) coupled to cryotrapping was employed to introduce, separately and with high selectivity, four gaseous arsanes into a direct analysis in real time source for high-resolution mass spectrometry (DART-HR-MS). The arsanes, i.e., arsane (AsH3), methylarsane (CH3AsH2), dimethylarsane ((CH3)2AsH), and trimethylarsane ((CH3)3As), were formed under HG conditions that were close to those typically used for analytical purposes. Arsenic containing ion species formed during ambient ionization in the DART were examined both in the positive and negative ion modes. It was clearly demonstrated that numerous arsenic ion species originated in the DART source that did not accurately reflect their origin. Pronounced oxidation, hydride abstraction, methyl group(s) loss, and formation of oligomer ions complicate the identification of the original species in both modes of detection, leading to potential misinterpretation. Suitability of the use of the DART source for identification of arsenic species in multiphase reaction systems comprising HG is discussed.
Zobrazit více v PubMed
Dědina J, Tsalev DL. Hydride generation atomic absorption spectrometry. Chichester: Wiley; 1995.
D’Ulivo A, Dědina J, Mester Z, Sturgeon RE, Wang QQ, Welz B. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC technical report). Pure Appl Chem. 2011;83:1283–340. DOI
Cornelis R, Caruso J, Crews H, Heumann K. Handbook of elemental speciation II, species in the environment, food, medicine and occupational health. Chichester, England: Wiley; 2005. DOI
Howard AG. (Boro)hydride techniques in trace element speciation - invited lecture. J Anal At Spectrom. 1997;12:267–72.
Musil S. Speciation analysis of arsenic based on hydride generation. Chem Listy. 2020;114:374–81.
Welna M, Szymczycha-Madeja A, Pohl P. Non-chromatographic speciation of As by HG technique–analysis of samples with different matrices. Molecules. 2020;25:4944. DOI PMC
Musil S, Pétursdóttir ÁH, Raab A, Gunnlaugsdóttir H, Krupp E, Feldmann J. Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin. Anal Chem. 2014;86:993–9. PubMed DOI
Pitzalis E, Onor M, Mascherpa MC, Pacchi G, Mester Z, D’Ulivo A. Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic. Anal Chem. 2014;86:1599–607. PubMed DOI
Marschner K, Pétursdóttir ÁH, Bücker P, Raab A, Feldmann J, Mester Z, et al. Validation and inter-laboratory study of selective hydride generation for fast screening of inorganic arsenic in seafood. Anal Chim Acta. 2019;1049:20–8. PubMed DOI
Matoušek T, Hernández-Zavala A, Svoboda M, Langerová L, Adair BM, Drobná Z, et al. Oxidation state specific generation of arsines from methylated arsenicals based on L-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer. Spectrochim Acta B. 2008;63:396–406. DOI
Matoušek T, Currier JM, Trojánková N, Saunders RJ, Ishida MC, González-Horta C, et al. Selective hydride generation-cryotrapping-ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells. J Anal At Spectrom. 2013;28:1456–65. PubMed DOI PMC
Musil S, Matoušek T, Currier JM, Stýblo M, Dědina J. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation. Anal Chem. 2014;86:10422–8. PubMed DOI PMC
Gomez-Ariza JL, Sánchez-Rodas D, Beltran R, Corns W, Stockwel P. Evaluation of atomic fluorescence spectrometry as a sensitive detection technique for arsenic speciation. Appl Organomet Chem. 1998;12:439–47. DOI
Marschner K, Musil S, Dědina J. Achieving 100% efficient postcolumn hydride generation for as speciation analysis by atomic fluorescence spectrometry. Anal Chem. 2016;88:4041–7. PubMed DOI
Pétursdóttir ÁH, Gunnlaugsdóttir H, Jörundsdóttir H, Mestrot A, Krupp EM, Feldmann J. HPLC-HG-ICP-MS: a sensitive and selective method for inorganic arsenic in seafood. Anal Bioanal Chem. 2012;404:2185–91. PubMed DOI
D’Ulivo A. Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media: a critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim Acta B. 2004;59:793–825. DOI
D’Ulivo A, Onor M, Pitzalis E. Role of hydroboron intermediates in the mechanism of chemical vapor generation in strongly acidic media. Anal Chem. 2004;76:6342–52. PubMed DOI
D’Ulivo A, Mester Z, Sturgeon RE. The mechanism of formation of volatile hydrides by tetrahydroborate(III) derivatization: a mass spectrometric study performed with deuterium labeled reagents. Spectrochim Acta B. 2005;60:423–38. DOI
D’Ulivo A, Mester Z, Meija J, Sturgeon RE. Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. Anal Chem. 2007;79:3008–15. PubMed DOI
D’Ulivo A. Mechanism of generation of volatile species by aqueous boranes: towards the clarification of most controversial aspects. Spectrochim Acta B. 2010;65:360–75. DOI
D’Ulivo A. Mechanisms of chemical vapor generation by aqueous tetrahydridoborate. Recent developments toward the definition of a more general reaction model. Spectrochim Acta B. 2016;119:91–107. DOI
D’Ulivo A, Meija J, Mester Z, Pagliano E, Sturgeon RE. Condensation cascades and methylgroup transfer reactions during the formation of arsane, methyl- and dimethylarsane by aqueous borohydride and (methyl) arsenates. Anal Bioanal Chem. 2012;402:921–33.
Pagliano E, Onor M, Meija J, Mester Z, Sturgeon RE, D’Ulivo A. Mechanism of hydrogen transfer in arsane generation by aqueous tetrahydridoborate: interference effects of AuIII and other noble metals. Spectrochim Acta B. 2011;66:740–7. DOI
Pagliano E, D’Ulivo A, Mester Z, Sturgeon RE, Meija J. The binomial distribution of hydrogen and deuterium in arsanes, diarsanes, and triarsanes generated from As(III)/[BH PubMed DOI
Pagliano E, Onor M, McCooeye M, D’Ulivo A, Sturgeon RE, Mester Z. Application of direct analysis in real time to a multiphase chemical system: identification of polymeric arsanes generated by reduction of monomethylarsenate with sodium tetrahydroborate. Int J Mass Spectrom. 2014;371:42–6. DOI
Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to study chemical vapor generation mechanisms: reduction of dimethylarsinic(V) acid with aqueous NaBH
D’Ulivo L, Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to the study of chemical vapor generation mechanisms: identification of intermediate hydrolysis products of amine-boranes. Anal Bioanal Chem. 2019;411:1569–78. PubMed DOI
Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302. PubMed DOI
Gross JH. Direct analysis in real time-a critical review on DART-MS. Anal Bioanal Chem. 2014;406:63–80. PubMed DOI
Cody RB. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem. 2009;81:1101–7. PubMed DOI
Borges DLG, Sturgeon RE, Welz B, Curtius AJ, Mester Z. Ambient mass spectrometric detection of organometallic compounds using direct analysis in real time. Anal Chem. 2009;81:9834–9. PubMed DOI
Kratzer J, Zelina O, Svoboda M, Sturgeon RE, Mester Z, Dědina J. Atomization of bismuthane in a dielectric barrier discharge: a mechanistic study. Anal Chem. 2016;88:1804–11. PubMed DOI
Kratzer J, Musil S, Marschner K, Svoboda M, Matoušek T, Mester Z, et al. Behavior of selenium hydride in heated quartz tube and dielectric barrier discharge atomizers. Anal Chim Acta. 2018;1028:11–21. PubMed DOI
Matoušek T, Wang ZF, Douillet C, Musil S, Stýblo M. Direct speciation analysis of arsenic in whole blood and blood plasma at low exposure levels by hydride generation-cryotrapping-inductively coupled plasma mass spectrometry. Anal Chem. 2017;89:9633–7. PubMed DOI PMC
Musil S, Matoušek T. On-line pre-reduction of pentavalent arsenicals by thioglycolic acid for speciation analysis by selective hydride generation-cryotrapping-atomic absorption spectrometry. Spectrochim Acta B. 2008;63:685–91. DOI
Taurková P, Svoboda M, Musil S, Matoušek T. Loss of di- and trimethylarsine on Nafion membrane dryers following hydride generation. J Anal At Spectrom. 2011;26:220–3. DOI
Moraes DP, Svoboda M, Matoušek T, Flores EMM, Dědina J. Selective generation of substituted arsines-cryotrapping-atomic absorption spectrometry for arsenic speciation analysis in N-methylglucamine antimonate. J Anal At Spectrom. 2012;27:1734–42.
Huber CS, Vale MG, Dessuy MB, Svoboda M, Musil S, Dědina J. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection. Talanta. 2017;175:406–12. PubMed DOI
Marschner K, Musil S, Dědina J. Demethylation of methylated arsenic species during generation of arsanes with tetrahydridoborate(1−) in acidic media. Anal Chem. 2016; 88(12):6366–73.
Kratzer J, Mester Z, Sturgeon RE. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen. Spectrochim Acta B. 2011;66:594–603. DOI
Vyhnanovský J, Kratzer J, Benada O, Matoušek T, Mester Z, Sturgeon RE, et al. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal Chim Acta. 2018;1005:16–26. PubMed DOI
Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom DK, Sandstrom MW. Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim Cosmochim Acta. 2006;70:2480–91. DOI
Hirner AV, Feldmann J, Krupp E, Grümping R, Goguel R, Cullen WR. Metal(loid)organic compounds in geothermal gases and waters. Org Geochem. 1998;29:1765–78. DOI