Identification of Photochemically Generated Volatile Species of Ruthenium and Osmium Using Direct Analysis in Real Time Mass Spectrometry

. 2025 Aug 05 ; 97 (30) : 16593-16601. [epub] 20250727

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40717274

Photochemical vapor generation (PVG) was coupled to direct analysis in real time (DART) high-resolution mass spectrometry (HRMS) using N2 as the discharge gas in an attempt to identify unknown volatile carbonyls of Ru and Os generated during the UV photolysis of HCOOH-based photochemical media previously described in the literature. Initial insights into the ambient ionization process in the N2 DART were gained using volatile W(CO)6 and Fe(CO)5, either photochemically generated or introduced as standards from a headspace. In general, significant changes in the original carbonyl structure are observed in both positive and negative ion modes, characterized by the loss of CO group(s), oxidation, hydration, and formation of various adducts derived from N2 used as the discharge gas. Nevertheless, the ions detected under PVG conditions based on dilute or concentrated HCOOH media, preferably in the presence of transition metal mediators, suggest that the generated carbonyls of Ru and Os are mononuclear, contain five carbonyl groups, and are therefore Ru(CO)5 and Os(CO)5. When Co2+ was used as a mediator, some difficulties in identification were encountered because volatile Co(CO)4H was cogenerated with significant efficiency, overloading the DART and HRMS and even resulting in mixed metal carbonyl cluster ions during ionization. Additional experiments with PVG of Os conducted under oxidative conditions using deionized water, dilute HNO3, and dilute H2O2 as the photochemical media confirmed OsO4 as the volatile species. The same volatile species was also identified as the dominant product using dilute CH3COOH with the addition of Fe2+ as a mediator, suggesting the rather oxidative nature of this medium, although some distinct carbonyl/hydrido/methyl or acetato species were also observed. The controversies are discussed as well as other peculiarities of the DART-HRMS technique for the identification of volatile metal carbonyls.

Zobrazit více v PubMed

Sturgeon R. E.. Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry. J. Anal. At. Spectrom. 2017;32:2319–2340. doi: 10.1039/C7JA00285H. DOI

Leonori D., Sturgeon R. E.. A unified approach to mechanistic aspects of photochemical vapor generation. J. Anal. At. Spectrom. 2019;34:636–654. doi: 10.1039/C8JA00354H. DOI

Sturgeon R. E., Pagliano E., Lopes G. S., Neto R. S. A., Brito J. K. S.. Insights into the role of transition and noble metals mediating photochemical vapor generation. J. Anal. At. Spectrom. 2025;40:70–97. doi: 10.1039/D4JA00261J. DOI

de Oliveira R. M., Borges D. L. G., Grinberg P., Sturgeon R. E.. High-efficiency photoreductive vapor generation of osmium. J. Anal. At. Spectrom. 2021;36:2097–2106. doi: 10.1039/D1JA00192B. DOI

Gao Y., Li S., He H., Li T., Yu T., Liu R., Ni S., Shi Z.. Sensitive determination of osmium in natural waters by inductively coupled plasma mass spectrometry after photochemical vapor generation. Microchem. J. 2017;130:281–286. doi: 10.1016/j.microc.2016.09.017. DOI

Zhu Z., He D., Huang C., Zheng H., Zhang S., Hu S.. High-efficiency photooxidation vapor generation of osmium for determination by inductively coupled plasma-optical emission spectrometry. J. Anal. At. Spectrom. 2014;29:506–511. doi: 10.1039/c3ja50323b. DOI

Šoukal J., Sturgeon R. E., Musil S.. Efficient Photochemical Vapor Generation of Molybdenum for ICPMS Detection. Anal. Chem. 2018;90:11688–11695. doi: 10.1021/acs.analchem.8b03354. PubMed DOI

Vyhnanovský J., Sturgeon R. E., Musil S.. Cadmium Assisted Photochemical Vapor Generation of Tungsten for ICPMS detection. Anal. Chem. 2019;91:13306–13312. doi: 10.1021/acs.analchem.9b04241. PubMed DOI

Musil S., Vyhnanovský J., Sturgeon R. E.. Ultrasensitive Detection of Ruthenium by Coupling Cobalt and Cadmium Ion-Assisted Photochemical Vapor Generation to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2021;93:16543–16551. doi: 10.1021/acs.analchem.1c03739. PubMed DOI

Jeníková E., Nováková E., Hraníček J., Musil S.. Ultra-sensitive speciation analysis of tellurium by manganese and iron assisted photochemical vapor generation coupled to ICP-MS/MS. Anal. Chim. Acta. 2022;1201:339634. doi: 10.1016/j.aca.2022.339634. PubMed DOI

Musil S., Jeníková E., Vyhnanovský J., Sturgeon R. E.. Highly Efficient Photochemical Vapor Generation for Sensitive Determination of Iridium by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2023;95:3694–3702. doi: 10.1021/acs.analchem.2c04660. PubMed DOI PMC

Li L., Jiang C., Xiao J., Luo H., Zhang S., Zou Z., Huang K.. Applications of photochemical vapor generation-analytical atomic spectrometry for the speciation analysis of arsenic, mercury and selenium. Spectrochim. Acta, Part B. 2023;199:106579. doi: 10.1016/j.sab.2022.106579. DOI

Hu J., Chen H., Hou X., Jiang X.. Cobalt and Copper Ions Synergistically Enhanced Photochemical Vapor Generation of Molybdenum: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2019;91:5938–5944. doi: 10.1021/acs.analchem.9b00337. PubMed DOI

Hu J., Chen H., Jiang X., Hou X.. Photochemical Vapor Generation of Halides in Organic-Acid-Free Media: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2021;93:11151–11158. doi: 10.1021/acs.analchem.1c01639. PubMed DOI

Jeníková E., Vyhnanovský J., Hašlová K., Sturgeon R. E., Musil S.. Efficient Photochemical Vapor Generation from Low Concentration Formic Acid Media. Anal. Chem. 2024;96:1241–1250. doi: 10.1021/acs.analchem.3c04472. PubMed DOI PMC

Zeng W., Hu J., Chen H., Zou Z., Hou X., Jiang X.. Cobalt ion-enhanced photochemical vapor generation in a mixed acid medium for sensitive detection of tellurium­(iv) by atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2020;35:1405–1411. doi: 10.1039/D0JA00076K. DOI

Zhen Y., Chen H., Zhang M., Hu J., Hou X.. Cadmium and cobalt ions enhanced-photochemical vapor generation for determination of trace rhenium by ICP-MS. Appl. Spectrosc. Rev. 2022;57:318–337. doi: 10.1080/05704928.2021.1878368. DOI

Deng X., Dong L., Chen H., Wang W., Yu Y., Gao Y.. Sensitive Determination of Arsenic by Photochemical Vapor Generation with Inductively Coupled Plasma Mass Spectrometry: Synergistic Effect from Antimony and Cadmium. Anal. Chem. 2024;96:652–660. doi: 10.1021/acs.analchem.3c02331. PubMed DOI

Sturgeon R. E., Grinberg P.. Some speculations on the mechanisms of photochemical vapor generation. J. Anal. At. Spectrom. 2012;27:222–231. doi: 10.1039/C2JA10249H. DOI

Xu F., Lin T., Luo J., Hou X.. Selenium in Photochemical Vapor Generation: Mechanism Study and Potential Nonchromatographic Speciation Analysis. Anal. Chem. 2024;96:325–330. doi: 10.1021/acs.analchem.3c04180. PubMed DOI

He Y., Hu J., Zou W., Chen H., Jiang X., Hou X.. Chemical vapor generation of tungsten for atomic spectrometric determination: Homogeneous sensitizer and mechanism study. Anal. Chim. Acta. 2023;1278:341746. doi: 10.1016/j.aca.2023.341746. PubMed DOI

Yu Y., Chen H., Zhao Q., Mou Q., Dong L., Wang R., Shi Z., Gao Y.. Impact of Gas-Liquid Interface on Photochemical Vapor Generation. Anal. Chem. 2021;93:3343–3352. doi: 10.1021/acs.analchem.9b05634. PubMed DOI

Yang Q., Chen H., Hu J., Huang K., Hou X.. Simultaneous Detection of Ruthenium and Osmium by Photochemical Vapor Generation-Inductively Coupled Plasma-Mass Spectrometry. Anal. Chem. 2022;94:593–599. doi: 10.1021/acs.analchem.1c03357. PubMed DOI

Guo X., Sturgeon R. E., Mester Z., Gardner G. J.. Photochemical alkylation of inorganic arsenic - Part 1. Identification of volatile arsenic species. J. Anal. At. Spectrom. 2005;20:702–708. doi: 10.1039/b503661e. DOI

Yu Y., Jia Y., Shi Z., Chen Y., Ni S., Wang R., Tang Y., Gao Y.. Enhanced Photochemical Vapor Generation for the Determination of Bismuth by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2018;90:13557–13563. doi: 10.1021/acs.analchem.8b03681. PubMed DOI

Sturgeon R. E.. Detection of Bromine by ICP-oa-ToF-MS Following Photochemical Vapor Generation. Anal. Chem. 2015;87:3072–3079. doi: 10.1021/ac504747a. PubMed DOI

Hu J., Sturgeon R. E., Nadeau K., Hou X., Zheng C., Yang L.. Copper Ion Assisted Photochemical Vapor Generation of Chlorine for Its Sensitive Determination by Sector Field Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2018;90:4112–4118. doi: 10.1021/acs.analchem.8b00035. PubMed DOI

Grinberg P., Mester Z., Sturgeon R. E., Ferretti A.. Generation of volatile cobalt species by UV photoreduction and their tentative identification. J. Anal. At. Spectrom. 2008;23:583–587. doi: 10.1039/b717216h. DOI

Grinberg P., Mester Z., D’Ulivo A., Sturgeon R. E.. Gas chromatography-mass spectrometric identification of iodine species arising from photo-chemical vapor generation. Spectrochim. Acta, Part B. 2009;64:714–716. doi: 10.1016/j.sab.2009.06.009. DOI

Sturgeon R. E., Pagliano E.. Evidence for photochemical synthesis of fluoromethane. J. Anal. At. Spectrom. 2020;35:1720–1726. doi: 10.1039/D0JA00108B. DOI

Grinberg P., Sturgeon R. E., Gardner G.. Identification of volatile iron species generated by UV photolysis. Microchem. J. 2012;105:44–47. doi: 10.1016/j.microc.2012.05.036. DOI

Guo X., Sturgeon R. E., Mester Z., Gardner G.. UV photosynthesis of nickel carbonyl. Appl. Organomet. Chem. 2004;18:205–211. doi: 10.1002/aoc.602. DOI

Pagliano E., Vyhnanovský J., Musil S., de Oliveira R. M., Forczek S. T., Sturgeon R. E.. GC-MS exploration of photochemically generated species of Os, W and Ru from reductive and oxidative media. J. Anal. At. Spectrom. 2022;37:528–534. doi: 10.1039/D1JA00448D. DOI

Campanella B., Menciassi A., Onor M., Ferrari C., Bramanti E., D’Ulivo A.. Studies on photochemical vapor generation of selenium with germicidal low power ultraviolet mercury lamp. Spectrochim. Acta, Part B. 2016;126:11–16. doi: 10.1016/j.sab.2016.10.007. DOI

Guo X., Sturgeon R. E., Mester Z., Gardner G. J.. UV vapor generation for determination of selenium by heated quartz tube atomic absorption spectrometry. Anal. Chem. 2003;75:2092–2099. doi: 10.1021/ac020695h. PubMed DOI

Li H., Luo Y., Li Z., Yang L., Wang Q.. Nanosemiconductor-Based Photocatalytic Vapor Generation Systems for Subsequent Selenium Determination and Speciation with Atomic Fluorescence Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2012;84:2974–2981. doi: 10.1021/ac3001995. PubMed DOI

Hieber W., Stallmann H.. Über Metallcarbonyle. XLVI. Über Osmiumcarbonyle. Z. Elektrochem. Angew. Phys. Chem. 1943;49:288–292. doi: 10.1002/bbpc.19430490423. DOI

Koelliker R., Bor G.. Vapor Pressure of Pentacarbonylruthenium, Ru­(CO)5 . Inorg. Chem. 1991;30:2236–2237. doi: 10.1021/ic00009a053. DOI

Manchot W., Manchot W. J.. Darstellung von Rutheniumcarbonylen und -nitrosylen. Z. Anorg. Allg. Chem. 1936;226:385–415. doi: 10.1002/zaac.19362260410. DOI

Rushman P., Van Buuren G. N., Shiralian M., Pomeroy R. K.. Properties of the pentacarbonyls of ruthenium and osmium. Organometallics. 1983;2:693–694. doi: 10.1021/om00077a026. DOI

Calderazzo F., L’Eplattenier F.. Pentacarbonyls of ruthenium and osmium I. Infrared spectra andreactivity. Inorg. Chem. 1967;6:1220–1224. doi: 10.1021/ic50052a033. DOI

Abel E. W., Stone F. G. A.. The chemistry of transition-metal carbonyls: structural considerations. Q. Rev., Chem. Soc. 1969;23:325–371. doi: 10.1039/qr9692300325. DOI

L’Eplattenier F., Calderazzo F.. Pentacarbonyls of ruthenium and osmium. II. Dihydridotetracarbonylosmium and its substitution reactions. Inorg. Chem. 1967;6:2092–2097. doi: 10.1021/ic50057a036. DOI

Henderson W., Nicholson B. K.. Electrospray mass spectrometry of neutral metal carbonyl complexes using silver­(I) ions for ionisation. J. Chem. Soc., Chem. Commun. 1995:2531–2532. doi: 10.1039/c39950002531. DOI

Henderson W., McIndoe J. S., Nicholson B. K., Dyson P. J.. Electrospray mass spectrometry of metal carbonyl complexes. J. Chem. Soc., Dalton Trans. 1998:519–526. doi: 10.1039/a707868d. DOI

Gross J. H.. Direct analysis in real time-a critical review on DART-MS. Anal. Bioanal. Chem. 2014;406:63–80. doi: 10.1007/s00216-013-7316-0. PubMed DOI

Cody R. B., Laramée J. A., Durst H. D.. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005;77:2297–2302. doi: 10.1021/ac050162j. PubMed DOI

Song L., Chuah W., Lu X., Remsen E., Bartmess J. E.. Ionization Mechanism of Positive-Ion Nitrogen Direct Analysis in Real Time. J. Am. Soc. Mass Spectrom. 2018;29:640–650. doi: 10.1007/s13361-017-1885-7. PubMed DOI

Su R., Yu W., Sun K., Yang J., Chen C., Lian W., Liu S., Yang H.. The Ion Source of Nitrogen Direct Analysis in Real-Time Mass Spectrometry as a Highly Efficient Reactor: Generation of Reactive Oxygen Species. J. Am. Soc. Mass Spectrom. 2019;30:581–587. doi: 10.1007/s13361-019-02132-7. PubMed DOI

Borges D. L. G., Sturgeon R. E., Welz B., Curtius A. J., Mester Z.. Ambient Mass Spectrometric Detection of Organometallic Compounds Using Direct Analysis in Real Time. Anal. Chem. 2009;81:9834–9839. doi: 10.1021/ac901778n. PubMed DOI

Vyhnanovský J., Kratzer J., Benada O., Matoušek T., Mester Z., Sturgeon R. E., Dědina J., Musil S.. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal. Chim. Acta. 2018;1005:16–26. doi: 10.1016/j.aca.2017.12.013. PubMed DOI

Kratzer J., Musil S., Marschner K., Svoboda M., Matoušek T., Mester Z., Sturgeon R. E., Dědina J.. Behavior of selenium hydride in heated quartz tube and dielectric barrier discharge atomizers. Anal. Chim. Acta. 2018;1028:11–21. doi: 10.1016/j.aca.2018.05.053. PubMed DOI

Kratzer J., Zelina O., Svoboda M., Sturgeon R. E., Mester Z., Dědina J.. Atomization of Bismuthane in a Dielectric Barrier Discharge: A Mechanistic Study. Anal. Chem. 2016;88:1804–1811. doi: 10.1021/acs.analchem.5b04095. PubMed DOI

Matoušek T., Kratzer J., Sturgeon R. E., Mester Z., Musil S.. A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Anal. Bioanal. Chem. 2021;413:3443–3453. doi: 10.1007/s00216-021-03289-5. PubMed DOI

Pagliano E., Onor M., McCooeye M., D’Ulivo A., Sturgeon R. E., Mester Z.. Application of direct analysis in real time to a multiphase chemical system: Identification of polymeric arsanes generated by reduction of monomethylarsenate with sodium tetrahydroborate. Int. J. Mass Spectrom. 2014;371:42–46. doi: 10.1016/j.ijms.2014.07.048. DOI

Pagliano E., Onor M., Mester Z., D’Ulivo A.. Application of direct analysis in real time to study chemical vapor generation mechanisms: reduction of dimethylarsinic­(V) acid with aqueous NaBH4 under non-analytical conditions. Anal. Bioanal. Chem. 2020;412:7603–7613. doi: 10.1007/s00216-020-02896-y. PubMed DOI

Geng X., Zhao Z., Li H., Chen D.. Tee-Shaped Sample Introduction Device Coupled with Direct Analysis in Real-Time Mass Spectrometry for Gaseous Analytes. Anal. Chem. 2021;93:16813–16820. doi: 10.1021/acs.analchem.1c03281. PubMed DOI

Vyhnanovský J., Yildiz D., Štádlerová B., Musil S.. Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchem. J. 2021;164:105997. doi: 10.1016/j.microc.2021.105997. DOI

Turner J. J., George M. W., Poliakoff M., Perutz R. N.. Photochemistry of transition metal carbonyls. Chem. Soc. Rev. 2022;51:5300–5329. doi: 10.1039/D1CS00826A. PubMed DOI

de Oliveira R. M., Borges D. L. G.. UV photochemical vapor generation of noble metals (Au, Ir, Pd, Pt and Rh): a feasibility study using inductively coupled plasma mass spectrometry and seawater as a test matrix. J. Anal. At. Spectrom. 2018;33:1700–1706. doi: 10.1039/C8JA00179K. DOI

Dong L., Ning Y., Hu J., Wang W., Yu Y., Gao Y.. Transition metal ion assisted photochemical vapor generation of niobium and tantalum. J. Anal. At. Spectrom. 2024;39:791–799. doi: 10.1039/D3JA00431G. DOI

Hašlová K., Musil S.. Sensitive and Spectral Interference-Free Determination of Rhodium by Photochemical Vapor Generation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2025;97:3545–3553. doi: 10.1021/acs.analchem.4c05921. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...