Efficient Photochemical Vapor Generation from Low Concentration Formic Acid Media
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38183660
PubMed Central
PMC10809224
DOI
10.1021/acs.analchem.3c04472
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Herein, we report on surprisingly efficient photochemical vapor generation (PVG) of Ru, Re, and especially Ir, achieved from very dilute HCOOH media employing a thin-film flow-through photoreactor operated in flow injection mode. In the absence of added metal ion sensitizers, efficiencies near 20% for Ir and approximately 0.06% for Ru and Re occur in a narrow range of HCOOH concentrations (around 0.01 M), significantly higher than previously reported from conventionally optimized HCOOH concentrations (1-20 M). A substantial enhancement in efficiency, to around 9 and 1.5%, could be realized for Ru and Re, respectively, when 0.005 M HCOONa served as the PVG medium. The addition of metal ion sensitizers (particularly Cd2+ and Co2+) to 0.01 M HCOOH significantly enhanced PVG efficiencies to 17, 2.2, and 81% for Ru, Re, and Ir, respectively. Possible mechanistic aspects occurring in dilute HCOOH media are discussed, wherein this phenomenon is attributed to the action of 185 nm radiation available in the thin-film flow-through photoreactor. An extended study of PVG of Fe, Co, Ni, As, Se, Mo, Rh, Te, W, and Bi from both dilute HCOOH and CH3COOH was undertaken, and several elements for which a similar phenomenon appears were identified (i.e., Co, As, Se, Te, and Bi). Although use of dilute HCOOH media is attractive for practical analytical applications employing PVG, it is less tolerant toward dissolved gases and interferents in the liquid phase due to the likely lower concentrations of free radicals and aquated electrons required for analyte ion reduction and product synthesis.
Faculty of Science Charles University Hlavova 8 Prague 128 43 Czech Republic
National Research Council of Canada 1200 Montreal Road Ottawa Ontario K1A 0R6 Canada
See more in PubMed
Sturgeon R. E. Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry. J. Anal. At. Spectrom. 2017, 32, 2319–2340. 10.1039/C7JA00285H. DOI
Leonori D.; Sturgeon R. E. A unified approach to mechanistic aspects of photochemical vapor generation. J. Anal. At. Spectrom. 2019, 34, 636–654. 10.1039/C8JA00354H. DOI
Zhu Z.; He D.; Huang C.; Zheng H.; Zhang S.; Hu S. High-efficiency photooxidation vapor generation of osmium for determination by inductively coupled plasma-optical emission spectrometry. J. Anal. At. Spectrom. 2014, 29, 506–511. 10.1039/c3ja50323b. DOI
de Oliveira R. M.; Borges D. L. G.; Grinberg P.; Sturgeon R. E. High-efficiency photoreductive vapor generation of osmium. J. Anal. At. Spectrom. 2021, 36, 2097–2106. 10.1039/D1JA00192B. DOI
Pagliano E.; Vyhnanovský J.; Musil S.; de Oliveira R. M.; Forczek S. T.; Sturgeon R. E. GC-MS exploration of photochemically generated species of Os, W and Ru from reductive and oxidative media. J. Anal. At. Spectrom. 2022, 37, 528–534. 10.1039/D1JA00448D. DOI
Hu J.; Li C.; Zhen Y.; Chen H.; He J.; Hou X. Current advances of chemical vapor generation in non-tetrahydroborate media for analytical atomic spectrometry. TrAC, Trends Anal. Chem. 2022, 155, 11667710.1016/j.trac.2022.116677. DOI
Qin D.; Gao F.; Zhang Z.; Zhao L.; Liu J.; Ye J.; Li J.; Zheng F. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction. Spectrochim. Acta, Part B 2013, 88, 10–14. 10.1016/j.sab.2013.07.011. DOI
Zhou J.; Deng D.; Su Y.; Lv Y. Determination of total inorganic arsenic in water samples by cadmium ion assisted photochemical vapor generation-atomic fluorescence spectrometry. Microchem. J. 2019, 146, 359–365. 10.1016/j.microc.2019.01.022. DOI
Xu F.; Zou Z.; He J.; Li M.; Xu K.; Hou X. In situ formation of nano-CdSe as a photocatalyst: cadmium ion-enhanced photochemical vapour generation directly from Se(VI). Chem. Commun. 2018, 54, 4874–4877. 10.1039/C8CC01513A. PubMed DOI
Vyhnanovský J.; Sturgeon R. E.; Musil S. Cadmium Assisted Photochemical Vapor Generation of Tungsten for ICPMS detection. Anal. Chem. 2019, 91, 13306–13312. 10.1021/acs.analchem.9b04241. PubMed DOI
Vyhnanovský J.; Yildiz D.; Štádlerová B.; Musil S. Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchem. J. 2021, 164, 10599710.1016/j.microc.2021.105997. DOI
Yu Y.; Zhao Q.; Bao H.; Mou Q.; Shi Z.; Chen Y.; Gao Y. Determination of Trace Bismuth in Environmental Waters by ICP-MS with Cobalt Ion-Assisted Photochemical Vapour Generation. Geostand. Geoanal. Res. 2020, 44, 617–627. 10.1111/ggr.12319. DOI
Mou Q.; Dong L.; Xu L.; Song Z.; Yu Y.; Wang E.; Zhao Y.; Gao Y. Integration of cobalt ion assisted Fenton digestion and photochemical vapor generation: a green method for rapid determination of trace cadmium in rice. J. Anal. At. Spectrom. 2021, 36, 1422–1430. 10.1039/D1JA00037C. DOI
Yu Y.; Hu J.; Zhao X.; Liu J.; Gao Y. Photochemical vapor generation for germanium: synergistic effect from cobalt/chloride ions and air-liquid interfaces. Anal. Bioanal. Chem. 2022, 414, 5709–5717. 10.1007/s00216-022-04126-z. PubMed DOI
Gao Y.; Xu M.; Sturgeon R. E.; Mester Z.; Shi Z.; Galea R.; Saull P.; Yang L. Metal Ion-Assisted Photochemical Vapor Generation for the Determination of Lead in Environmental Samples by Multicollector-ICPMS. Anal. Chem. 2015, 87, 4495–4502. 10.1021/acs.analchem.5b00533. PubMed DOI
Zeng W.; Hu J.; Chen H.; Zou Z.; Hou X.; Jiang X. Cobalt ion-enhanced photochemical vapor generation in a mixed acid medium for sensitive detection of tellurium(iv) by atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2020, 35, 1405–1411. 10.1039/D0JA00076K. DOI
Zeng W.; Hu Z.; Luo J.; Hou X.; Jiang X. Highly sensitive determination of trace antimony in water samples by cobalt ion enhanced photochemical vapor generation coupled with atomic fluorescence spectrometry or ICP-MS. Anal. Chim. Acta 2022, 1191, 33936110.1016/j.aca.2021.339361. PubMed DOI
Xu T.; Hu J.; Chen H. Transition metal ion Co(II)-assisted photochemical vapor generation of thallium for its sensitive determination by inductively coupled plasma mass spectrometry. Microchem. J. 2019, 149, 10397210.1016/j.microc.2019.103972. DOI
Hu J.; Chen H.; Jiang X.; Hou X. Photochemical Vapor Generation of Halides in Organic-Acid-Free Media: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2021, 93, 11151–11158. 10.1021/acs.analchem.1c01639. PubMed DOI
Hu J.; Sturgeon R. E.; Nadeau K.; Hou X.; Zheng C.; Yang L. Copper Ion Assisted Photochemical Vapor Generation of Chlorine for Its Sensitive Determination by Sector Field Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2018, 90, 4112–4118. 10.1021/acs.analchem.8b00035. PubMed DOI
Hu J.; Yu Y.; Xiao Z.; Gao Y. Photochemical vapor generation of Zinc and Gallium. Microchem. J. 2023, 193, 109178.10.1016/j.microc.2023.109178. DOI
Sturgeon R. E.; Pagliano E. Evidence for photochemical synthesis of fluoromethane. J. Anal. At. Spectrom. 2020, 35, 1720–1726. 10.1039/D0JA00108B. DOI
Macedo de Oliveira R.; Borges D. L. G. UV photochemical vapor generation of noble metals (Au, Ir, Pd, Pt and Rh): a feasibility study using inductively coupled plasma mass spectrometry and seawater as a test matrix. J. Anal. At. Spectrom. 2018, 33, 1700–1706. 10.1039/C8JA00179K. DOI
Wang Y.; Lin L.; Liu J.; Mao X.; Wang J.; Qin D. Ferric ion induced enhancement of ultraviolet vapour generation coupled with atomic fluorescence spectrometry for the determination of ultratrace inorganic arsenic in surface water. Analyst 2016, 141, 1530–1536. 10.1039/C5AN02489G. PubMed DOI
Yu Y.; Jia Y.; Shi Z.; Chen Y.; Ni S.; Wang R.; Tang Y.; Gao Y. Enhanced Photochemical Vapor Generation for the Determination of Bismuth by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2018, 90, 13557–13563. 10.1021/acs.analchem.8b03681. PubMed DOI
He H.; Peng X.; Yu Y.; Shi Z.; Xu M.; Ni S.; Gao Y. Photochemical Vapor Generation of Tellurium: Synergistic Effect from Ferric Ion and Nano-TiO2. Anal. Chem. 2018, 90, 5737–5743. 10.1021/acs.analchem.8b00022. PubMed DOI
Šoukal J.; Sturgeon R. E.; Musil S. Efficient Photochemical Vapor Generation of Molybdenum for ICPMS Detection. Anal. Chem. 2018, 90, 11688–11695. 10.1021/acs.analchem.8b03354. PubMed DOI
Nováková E.; Horová K.; Červený V.; Hraníček J.; Musil S. UV photochemical vapor generation of Cd from a formic acid based medium: optimization, efficiency and interferences. J. Anal. At. Spectrom. 2020, 35, 1380–1388. 10.1039/D0JA00086H. DOI
Dong L.; Chen H.; Ning Y.; He Y.; Yu Y.; Gao Y. Vanadium Species-Assisted Photochemical Vapor Generation for Direct Detection of Trace Tellurium with Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2022, 94, 4770–4778. 10.1021/acs.analchem.1c05525. PubMed DOI
Hu J.; Chen H.; Hou X.; Jiang X. Cobalt and Copper Ions Synergistically Enhanced Photochemical Vapor Generation of Molybdenum: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2019, 91, 5938–5944. 10.1021/acs.analchem.9b00337. PubMed DOI
Yang Q.; Chen H.; Hu J.; Huang K.; Hou X. Simultaneous Detection of Ruthenium and Osmium by Photochemical Vapor Generation-Inductively Coupled Plasma-Mass Spectrometry. Anal. Chem. 2022, 94, 593–599. 10.1021/acs.analchem.1c03357. PubMed DOI
Zhen Y.; Chen H.; Zhang M.; Hu J.; Hou X. Cadmium and cobalt ions enhanced-photochemical vapor generation for determination of trace rhenium by ICP-MS. Appl. Spectrosc. Rev. 2022, 57, 318–337. 10.1080/05704928.2021.1878368. DOI
Musil S.; Vyhnanovský J.; Sturgeon R. E. Ultrasensitive Detection of Ruthenium by Coupling Cobalt and Cadmium Ion-Assisted Photochemical Vapor Generation to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2021, 93, 16543–16551. 10.1021/acs.analchem.1c03739. PubMed DOI
Musil S.; Jeníková E.; Vyhnanovský J.; Sturgeon R. E. Highly Efficient Photochemical Vapor Generation for Sensitive Determination of Iridium by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2023, 95, 3694–3702. 10.1021/acs.analchem.2c04660. PubMed DOI PMC
Jeníková E.; Nováková E.; Hraníček J.; Musil S. Ultra-sensitive speciation analysis of tellurium by manganese and iron assisted photochemical vapor generation coupled to ICP-MS/MS. Anal. Chim. Acta 2022, 1201, 33963410.1016/j.aca.2022.339634. PubMed DOI
Zheng C.; Sturgeon R. E.; Brophy C. S.; He S.; Hou X. High-Yield UV-Photochemical Vapor Generation of Iron for Sample Introduction with Inductively Coupled Plasma Optical Emission Spectrometry. Anal. Chem. 2010, 82, 2996–3001. 10.1021/ac100059b. PubMed DOI
Zheng C.; Yang L.; Sturgeon R. E.; Hou X. UV Photochemical Vapor Generation Sample Introduction for Determination of Ni, Fe, and Se in Biological Tissue by Isotope Dilution ICPMS. Anal. Chem. 2010, 82, 3899–3904. 10.1021/ac1004376. PubMed DOI
Šoukal J.; Musil S. Detailed evaluation of conditions of photochemical vapor generation for sensitive determination of nickel in water samples by ICP-MS detection. Microchem. J. 2022, 172, 10696310.1016/j.microc.2021.106963. DOI
Guo X.; Sturgeon R. E.; Mester Z.; Gardner G. UV photosynthesis of nickel carbonyl. Appl. Organomet. Chem. 2004, 18, 205–211. 10.1002/aoc.602. DOI
Deng H.; Zheng C.; Liu L.; Wu L.; Hou X.; Lv Y. Photochemical vapor generation of carbonyl for ultrasensitive atomic fluorescence spectrometric determination of cobalt. Microchem. J. 2010, 96, 277–282. 10.1016/j.microc.2010.04.002. DOI
Coutinho de Jesus H.; Grinberg P.; Sturgeon R. E. System optimization for determination of cobalt in biological samples by ICP-OES using photochemical vapor generation. J. Anal. At. Spectrom. 2016, 31, 1590–1604. 10.1039/C6JA00069J. DOI
Zheng C.; Sturgeon R. E.; Hou X. UV photochemical vapor generation and in situ preconcentration for determination of ultra-trace nickel by flow injection graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2009, 24, 1452–1458. 10.1039/b909962j. DOI
Vyhnanovský J.; Hašlová K.; Musil S.. Novel photochemical vapor generation of rhenium for its ultratrace determination. In 17th International Student Conference ″Modern Analytical Chemistry″, Nesměrák K., Ed.; September 16–17, 2021; pp 200–204, Prague, Czech Republic.
Cuello-Nuñez S.; Abad-Álvaro I.; Bartczak D.; del Castillo Busto M. E.; Ramsay D. A.; Pellegrino F.; Goenaga-Infante H. The accurate determination of number concentration of inorganic nanoparticles using spICP-MS with the dynamic mass flow approach. J. Anal. At. Spectrom. 2020, 35, 1832–1839. 10.1039/C9JA00415G. DOI
Sturgeon R. E.Insights into the role of transition and noble metals mediating photochemical vapor generation. In 16th Rio Symposium on Atomic Spectrometry, Bento Gonçalves, Brazil, November 28–30, 2023; p 49.
Buxton G. V.; Sellers R. M. Acid dissociation constant of the carboxyl radical. Pulse radiolysis studies of aqueous solutions of formic acid and sodium formate. J. Chem. Soc., Faraday Trans. 1 1973, 1 (69), 555–559. 10.1039/f19736900555. DOI
Hu J.; Li C.; Chen H.; Hou X. Photochemical Hydride Generation in Sulfite Medium: Sample Introduction into an Inductively Coupled Plasma Mass Spectrometer for the Determination of Ultratrace Inorganic Arsenic. Anal. Chem. 2023, 95, 10498–10503. 10.1021/acs.analchem.3c01537. PubMed DOI
Yu Y.; Chen H.; Zhao Q.; Mou Q.; Dong L.; Wang R.; Shi Z.; Gao Y. Impact of Gas-Liquid Interface on Photochemical Vapor Generation. Anal. Chem. 2021, 93, 3343–3352. 10.1021/acs.analchem.9b05634. PubMed DOI
Campanella B.; Menciassi A.; Onor M.; Ferrari C.; Bramanti E.; D’Ulivo A. Studies on photochemical vapor generation of selenium with germicidal low power ultraviolet mercury lamp. Spectrochim. Acta, Part B 2016, 126, 11–16. 10.1016/j.sab.2016.10.007. DOI
Adams G. E.; Hart E. J. Radiolysis and Photolysis of Aqueous Formic Acid. Carbon Monoxide Formation. J. Am. Chem. Soc. 1962, 84, 3994–3999. 10.1021/ja00880a003. DOI
Drews W.; Weber G.; Tölg G. Flow-injection system for the determination of nickel by means of MIP-OES after conversion to Ni(CO)4. Fresenius' Z. Anal. Chem. 1989, 332, 862–865. 10.1007/BF00635738. DOI
Sturgeon R. E.; Willie S. N.; Berman S. S. Graphite furnace atomic absorption spectrometric determination of nickel at sub-ng g-1 levels in marine samples by carbonyl generation with in situ pre-concentration. J. Anal. At. Spectrom. 1989, 4, 443–446. 10.1039/JA9890400443. DOI
Lednor P. W.; Versloot P. C. Radical-anion chemistry of carbon monoxide. J. Chem. Soc., Chem. Commun. 1983, 284–285. 10.1039/c39830000284. DOI
Zwinkels J.; Lee S.. UV transmittance spectrum of Teflon tubing, Unpublished data. NRCC, October 2017.
Weeks J. L.; Meaburn G. M. A. C.; Gordon S. Absorption Coefficients of Liquid Water and Aqueous Solutions in the Far Ultraviolet. Radiat. Res. 1963, 19, 559–567. 10.2307/3571475. PubMed DOI
Zechner J.; Getoff N. Photoproduction of hydrated electrons from formate ions at 184.9 nm. Int. J. Radiat. Phys. Chem. 1974, 6, 215–218. 10.1016/0020-7055(74)90043-6. DOI
Zoschke K.; Börnick H.; Worch E. Vacuum-UV radiation at 185 nm in water treatment – A review. Water Res. 2014, 52, 131–145. 10.1016/j.watres.2013.12.034. PubMed DOI
Imoberdorf G.; Mohseni M. Modeling and experimental evaluation of vacuum-UV photoreactors for water treatment. Chem. Eng. Sci. 2011, 66, 1159–1167. 10.1016/j.ces.2010.12.020. DOI
Hieber W.; Lagally H. Über Metallcarbonyle. XXXV. Über Iridiumcarbonyl. Z. Anorg. Allg. Chem. 1940, 245, 321–333. 10.1002/zaac.19402450311. DOI
Wrighton M. Photochemistry of metal carbonyls. Chem. Rev. 1974, 74, 401–430. 10.1021/cr60290a001. DOI
Ziegler T.; Tschinke V.; Ursenbach C. Thermal stability and kinetic lability of the metal carbonyl bond. A theoretical study on M(CO)6 (M = chromium, molybdenum, tungsten), M(CO)5 (M = iron, ruthenium, osmium), and M(CO)4 (M = nickel, palladium, platinum). J. Am. Chem. Soc. 1987, 109, 4825–4837. 10.1021/ja00250a013. DOI