Sensitive and Spectral Interference-Free Determination of Rhodium by Photochemical Vapor Generation Inductively Coupled Plasma Mass Spectrometry

. 2025 Feb 18 ; 97 (6) : 3545-3553. [epub] 20250209

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39924740

A sensitive method for Rh determination was developed by coupling photochemical vapor generation (PVG) for sample introduction to inductively coupled plasma mass spectrometry (ICPMS). PVG was conducted in a thin-film flow-through photoreactor operated in a flow injection mode from a photochemical medium comprising 10 M HCOOH. PVG efficiency was substantially enhanced by the addition of 10 mg L-1 Cu2+ and 5 mg L-1 Co2+ as mediators as well as 50 mM NaNO3. The volatile product (likely Rh(CO)4H) was found to be less stable when in prolonged contact with the liquid medium at the output from the photoreactor. Hence, further enhancement was achieved by introducing an Ar carrier gas near the exit of the photoreactor to minimize the interaction of volatile species with the liquid medium. Despite PVG efficiency reaching only 15%, measurement at the ultratrace level (20 ng L-1) was characterized by very good repeatability of peak area response (2.9%) and outstanding limits of detection (13 pg L-1, 6.5 fg absolute) using He in the collision cell. Interferences from potential coexisting metals, inorganic acids, and their anions were investigated. Accuracy was verified by analysis of OREAS 684 (Platinum Group Element Ore) and SRM 2556 (Used Auto Catalyst) following peroxide fusion for sample preparation. Application to the direct analysis of real river and lake water samples and reference materials AQUA-1 and SLRS-6 demonstrated excellent selectivity of the PVG-ICPMS methodology over conventional pneumatic nebulization-ICP(MS)/MS, the results of which were seriously biased by polyatomic interferences, especially from Sr and Cu, despite the use of various reaction/collision cell modes.

Zobrazit více v PubMed

Hughes A. E.; Haque N.; Northey S. A.; Giddey S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 9310.3390/resources10090093. DOI

Cobelo-García A.; Filella M.; Croot P.; Frazzoli C.; Du Laing G.; Ospina-Alvarez N.; Rauch S.; Salaun P.; Schäfer J.; Zimmermann S. COST action TD1407: network on technology-critical elements (NOTICE)-from environmental processes to human health threats. Environ. Sci. Pollut. Res. 2015, 22, 15188–15194. 10.1007/s11356-015-5221-0. PubMed DOI PMC

Mitra A.; Sen I. S. Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination. Geochim. Cosmochim. Acta 2017, 216, 417–432. 10.1016/j.gca.2017.08.025. DOI

Colombo C.; Monhemius A. J.; Plant J. A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008, 71, 722–730. 10.1016/j.ecoenv.2007.11.011. PubMed DOI

Ding Y.; Zhang S.; Liu B.; Zheng H.; Chang C.; Ekberg C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 2019, 141, 284–298. 10.1016/j.resconrec.2018.10.041. DOI

Yan J.; Wei J.; Zhang F.; Zhang X.; He Z.; Xie F.; Hua X.; Zhang B. Comprehensive review on recovery of platinum group metals from spent automotive catalysts by metal capture technology: Present progress and outlook. J. Environ. Chem. Eng. 2024, 12, 11401710.1016/j.jece.2024.114017. DOI

Ojeda C. B.; Rojas F. S. Determination of rhodium: Since the origins until today: ICP-OES and ICP-MS. Talanta 2007, 71, 1–12. 10.1016/j.talanta.2006.04.024. PubMed DOI

Grebneva-Balyuk O. N.; Kubrakova I. V. Determination of Platinum Group Elements in Geological Samples by Inductively Coupled Plasma Mass Spectrometry: Possibilities and Limitations. J. Anal. Chem. 2020, 75, 275–285. 10.1134/S1061934820030065. DOI

Bolea-Fernandez E.; Balcaen L.; Resano M.; Vanhaecke F. Overcoming spectral overlap via inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). A tutorial review. J. Anal. At. Spectrom. 2017, 32, 1660–1679. 10.1039/C7JA00010C. DOI

Vapor Generation Techniques for Trace Element Analysis. Fundamental Aspects; D′Ulivo A.; Sturgeon R. E., Eds.; Elsevier, 2022.

Sturgeon R. E. Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry. J. Anal. At. Spectrom. 2017, 32, 2319–2340. 10.1039/C7JA00285H. DOI

Leonori D.; Sturgeon R. E. A unified approach to mechanistic aspects of photochemical vapor generation. J. Anal. At. Spectrom. 2019, 34, 636–654. 10.1039/C8JA00354H. DOI

Hu J.; Li C.; Zhen Y.; Chen H.; He J.; Hou X. Current advances of chemical vapor generation in non-tetrahydroborate media for analytical atomic spectrometry. TrAC, Trends Anal. Chem. 2022, 155, 11667710.1016/j.trac.2022.116677. DOI

Zhen Y.; Chen H.; Zhang M.; Hu J.; Hou X. Cadmium and cobalt ions enhanced-photochemical vapor generation for determination of trace rhenium by ICP-MS. Appl. Spectrosc. Rev. 2022, 57, 318–337. 10.1080/05704928.2021.1878368. DOI

Musil S.; Jeníková E.; Vyhnanovský J.; Sturgeon R. E. Highly Efficient Photochemical Vapor Generation for Sensitive Determination of Iridium by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2023, 95, 3694–3702. 10.1021/acs.analchem.2c04660. PubMed DOI PMC

Musil S.; Vyhnanovský J.; Sturgeon R. E. Ultrasensitive Detection of Ruthenium by Coupling Cobalt and Cadmium Ion-Assisted Photochemical Vapor Generation to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2021, 93, 16543–16551. 10.1021/acs.analchem.1c03739. PubMed DOI

Yang Q.; Chen H.; Hu J.; Huang K.; Hou X. Simultaneous Detection of Ruthenium and Osmium by Photochemical Vapor Generation-Inductively Coupled Plasma-Mass Spectrometry. Anal. Chem. 2022, 94, 593–599. 10.1021/acs.analchem.1c03357. PubMed DOI

Jeníková E.; Nováková E.; Hraníček J.; Musil S. Ultra-sensitive speciation analysis of tellurium by manganese and iron assisted photochemical vapor generation coupled to ICP-MS/MS. Anal. Chim. Acta 2022, 1201, 33963410.1016/j.aca.2022.339634. PubMed DOI

Gao Y.; Xu M.; Sturgeon R. E.; Mester Z.; Shi Z.; Galea R.; Saull P.; Yang L. Metal Ion-Assisted Photochemical Vapor Generation for the Determination of Lead in Environmental Samples by Multicollector-ICPMS. Anal. Chem. 2015, 87, 4495–4502. 10.1021/acs.analchem.5b00533. PubMed DOI

Hu J.; Chen H.; Hou X.; Jiang X. Cobalt and Copper Ions Synergistically Enhanced Photochemical Vapor Generation of Molybdenum: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2019, 91, 5938–5944. 10.1021/acs.analchem.9b00337. PubMed DOI

Šoukal J.; Sturgeon R. E.; Musil S. Efficient Photochemical Vapor Generation of Molybdenum for ICPMS Detection. Anal. Chem. 2018, 90, 11688–11695. 10.1021/acs.analchem.8b03354. PubMed DOI

Vyhnanovský J.; Sturgeon R. E.; Musil S. Cadmium Assisted Photochemical Vapor Generation of Tungsten for ICPMS detection. Anal. Chem. 2019, 91, 13306–13312. 10.1021/acs.analchem.9b04241. PubMed DOI

Hu J.; Yu Y.; Xiao Z.; Gao Y. Photochemical vapor generation of Zinc and Gallium. Microchem. J. 2023, 193, 10917810.1016/j.microc.2023.109178. DOI

He H.; Peng X.; Yu Y.; Shi Z.; Xu M.; Ni S.; Gao Y. Photochemical Vapor Generation of Tellurium: Synergistic Effect from Ferric Ion and Nano-TiO2. Anal. Chem. 2018, 90, 5737–5743. 10.1021/acs.analchem.8b00022. PubMed DOI

de Oliveira R. M.; Borges D. L. G. UV photochemical vapor generation of noble metals (Au, Ir, Pd, Pt and Rh): a feasibility study using inductively coupled plasma mass spectrometry and seawater as a test matrix. J. Anal. At. Spectrom. 2018, 33, 1700–1706. 10.1039/C8JA00179K. DOI

de Oliveira R. M.; Borges D. L. G.; Grinberg P.; Sturgeon R. E. High-efficiency photoreductive vapor generation of osmium. J. Anal. At. Spectrom. 2021, 36, 2097–2106. 10.1039/D1JA00192B. DOI

Vyhnanovský J.; Yildiz D.; Štádlerová B.; Musil S. Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchem. J. 2021, 164, 10599710.1016/j.microc.2021.105997. DOI

Dong L.; Chen H.; Ning Y.; He Y.; Yu Y.; Gao Y. Vanadium Species-Assisted Photochemical Vapor Generation for Direct Detection of Trace Tellurium with Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2022, 94, 4770–4778. 10.1021/acs.analchem.1c05525. PubMed DOI

Nakazato T.; Tao H. A High-Efficiency Photooxidation Reactor for Speciation of Organic Arsenicals by Liquid Chromatography–Hydride Generation–ICPMS. Anal. Chem. 2006, 78, 1665–1672. 10.1021/ac051783f. PubMed DOI

Guo X.; Sturgeon R. E.; Mester Z.; Gardener G. K. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids. Environ. Sci. Technol. 2003, 37, 5645–5650. 10.1021/es034418j. PubMed DOI

Rybínová M.; Červený V.; Rychlovský P. UV-photochemical vapour generation with in situ trapping in a graphite tube atomizer for ultratrace determination of selenium. J. Anal. At. Spectrom. 2015, 30, 1752–1763. 10.1039/C5JA00173K. DOI

Rybínová M.; Musil S.; Červený V.; Vobecký M.; Rychlovský P. UV-photochemical vapor generation of selenium for atomic absorption spectrometry: Optimization and Se-75 radiotracer efficiency study. Spectrochim. Acta, Part B 2016, 123, 134–142. 10.1016/j.sab.2016.08.009. DOI

Yu Y.; Hu J.; Zhao X.; Liu J.; Gao Y. Photochemical vapor generation for germanium: synergistic effect from cobalt/chloride ions and air-liquid interfaces. Anal. Bioanal. Chem. 2022, 414, 5709–5717. 10.1007/s00216-022-04126-z. PubMed DOI

Duan H.; Gong Z.; Yang S. Online photochemical vapour generation of inorganic tin for inductively coupled plasma mass spectrometric detection. J. Anal. At. Spectrom. 2015, 30, 410–416. 10.1039/C4JA00249K. DOI

Zhang Y.; Chen H.; Hu J.; Hou X. Highly Efficient Photochemical Vapor Generation for Sensitive Determination of Trace Inorganic Tin by Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc. 2023, 44, 385–391. 10.46770/AS.2023.267. DOI

Zhu Z.; He D.; Huang C.; Zheng H.; Zhang S.; Hu S. High-efficiency photooxidation vapor generation of osmium for determination by inductively coupled plasma-optical emission spectrometry. J. Anal. At. Spectrom. 2014, 29, 506–511. 10.1039/c3ja50323b. DOI

Gao Y.; Li S.; He H.; Li T.; Yu T.; Liu R.; Ni S.; Shi Z. Sensitive determination of osmium in natural waters by inductively coupled plasma mass spectrometry after photochemical vapor generation. Microchem. J. 2017, 130, 281–286. 10.1016/j.microc.2016.09.017. DOI

Pagliano E.; Vyhnanovský J.; Musil S.; de Oliveira R. M.; Forczek S. T.; Sturgeon R. E. GC-MS exploration of photochemically generated species of Os, W and Ru from reductive and oxidative media. J. Anal. At. Spectrom. 2022, 37, 528–534. 10.1039/D1JA00448D. DOI

Guo X.; Sturgeon R. E.; Mester Z.; Gardner G. J. Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Anal. Chem. 2004, 76, 2401–2405. 10.1021/ac0353536. PubMed DOI

Jeníková E.; Vyhnanovský J.; Hašlová K.; Sturgeon R. E.; Musil S. Efficient Photochemical Vapor Generation from Low Concentration Formic Acid Media. Anal. Chem. 2024, 96, 1241–1250. 10.1021/acs.analchem.3c04472. PubMed DOI PMC

Payette M.The Determination of Platinum, Palladium and Rhodium in Autocatalyst: an Exploration of Sample Preparation Techniques for the Rapid Sequential Multi-Elemental ICP-MS Analysis. Ph.D. Thesis, Laurentian University of Sudbury, 1997. https://central.bac-lac.gc.ca/.item?id=MQ31458&op=pdf&app=Library&oclc_number=46571305. (accessed January 04, 2025).

Zheng C.; Sturgeon R. E.; Brophy C. S.; He S.; Hou X. High-Yield UV-Photochemical Vapor Generation of Iron for Sample Introduction with Inductively Coupled Plasma Optical Emission Spectrometry. Anal. Chem. 2010, 82, 2996–3001. 10.1021/ac100059b. PubMed DOI

Grinberg P.; Sturgeon R. E.; Gardner G. Identification of volatile iron species generated by UV photolysis. Microchem. J. 2012, 105, 44–47. 10.1016/j.microc.2012.05.036. DOI

Deng X.; Dong L.; Chen H.; Wang W.; Yu Y.; Gao Y. Sensitive Determination of Arsenic by Photochemical Vapor Generation with Inductively Coupled Plasma Mass Spectrometry: Synergistic Effect from Antimony and Cadmium. Anal. Chem. 2024, 96, 652–660. 10.1021/acs.analchem.3c02331. PubMed DOI

Šoukal J.; Musil S. Detailed evaluation of conditions of photochemical vapor generation for sensitive determination of nickel in water samples by ICP-MS detection. Microchem. J. 2022, 172, 10696310.1016/j.microc.2021.106963. DOI

Lopes G. S.; Sturgeon R. E.; Grinberg P.; Pagliano E. Evaluation of approaches to the abatement of nitrate interference with photochemical vapor generation. J. Anal. At. Spectrom. 2017, 32, 2378–2390. 10.1039/C7JA00311K. DOI

Cuello-Nuñez S.; Abad-Alvaro I.; Bartczak D.; Busto M. E. D.; Ramsay D. A.; Pellegrino F.; Goenaga-Infante H. The accurate determination of number concentration of inorganic nanoparticles using spICP-MS with the dynamic mass flow approach. J. Anal. At. Spectrom. 2020, 35, 1832–1839. 10.1039/C9JA00415G. DOI

Yu Y.; Chen H.; Zhao Q.; Mou Q.; Dong L.; Wang R.; Shi Z.; Gao Y. Impact of Gas-Liquid Interface on Photochemical Vapor Generation. Anal. Chem. 2021, 93, 3343–3352. 10.1021/acs.analchem.9b05634. PubMed DOI

Dong L.; Wang W.; Ning Y.; Deng X.; Gao Y. Detection of trace antimony by vanadium (IV) ion assisted photochemical vapor generation with inductively coupled plasma mass spectrometry measurement. Anal. Chim. Acta 2023, 1251, 34100610.1016/j.aca.2023.341006. PubMed DOI

Adams G. E.; Hart E. J. Radiolysis and Photolysis of Aqueous Formic Acid. Carbon Monoxide Formation. J. Am. Chem. Soc. 1962, 84, 3994–3999. 10.1021/ja00880a003. DOI

Gao Y.; Sturgeon R. E.; Mester Z.; Pagliano E.; Galea R.; Saull P.; Hou X.; Yang L. On-line UV photochemical generation of volatile copper species and its analytical application. Microchem. J. 2016, 124, 344–349. 10.1016/j.microc.2015.09.020. DOI

Grinberg P.; Mester Z.; Sturgeon R. E.; Ferretti A. Generation of volatile cobalt species by UV photoreduction and their tentative identification. J. Anal. At. Spectrom. 2008, 23, 583–587. 10.1039/b717216h. DOI

Yu Y.; Zhao Q.; Bao H.; Mou Q.; Shi Z.; Chen Y.; Gao Y. Determination of Trace Bismuth in Environmental Waters by ICP-MS with Cobalt Ion-Assisted Photochemical Vapour Generation. Geostand. Geoanal. Res. 2020, 44, 617–627. 10.1111/ggr.12319. DOI

Wang J.; Liu X.; Beusen A. H. W.; Middelburg J. J. Surface-Water Nitrate Exposure to World Populations Has Expanded and Intensified during 1970–2010. Environ. Sci. Technol. 2023, 57, 19395–19406. 10.1021/acs.est.3c06150. PubMed DOI PMC

European Environment Agency . Nitrate in Groundwater in Europe 2024https://www.eea.europa.eu/en/analysis/indicators/nitrate-in-groundwater-8th-eap. (accessed January 04, 2025).

Yeghicheyan D.; Grinberg P.; Alleman L. Y.; Belhadj M.; Causse L.; Chmeleff J.; Cordier L.; Djouraev I.; Dumoulin D.; Dumont J.; et al. Collaborative determination of trace element mass fractions and isotope ratios in AQUA-1 drinking water certified reference material. Anal. Bioanal. Chem. 2021, 413, 4959–4978. 10.1007/s00216-021-03456-8. PubMed DOI

Yeghicheyan D.; Aubert D.; Bouhnik-Le Coz M.; Chmeleff J.; Delpoux S.; Djouraev I.; Granier G.; Lacan F.; Piro J.-L.; Rousseau T.; et al. A New Interlaboratory Characterisation of Silicon, Rare Earth Elements and Twenty-Two Other Trace Element Concentrations in the Natural River Water Certified Reference Material SLRS-6 (NRC-CNRC). Geostand. Geoanal. Res. 2019, 43, 475–496. 10.1111/ggr.12268. DOI

Yamada N. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations. Spectrochim. Acta, Part B 2015, 110, 31–44. 10.1016/j.sab.2015.05.008. DOI

Hieber W.; Lagally H. Über Metallcarbonyle. XLV. Das Rhodium im System der Metallcarbonyle. Z. Anorg. Allg. Chem. 1943, 251, 96–113. 10.1002/zaac.19432510110. DOI

Li C.; Widjaja E.; Chew W.; Garland M. Rhodium tetracarbonyl hydride: The elusive metal carbonyl hydride. Angew. Chem. 2002, 114, 3939–3943. 10.1002/1521-3757(20021018)114:20<3939::AID-ANGE3939>3.0.CO;2-N. PubMed DOI

Vidal J. L.; Walker W. E. Rhodium Carbonyl Cluster Chemistry under High Pressure of Carbon Monoxide and Hydrogen. 3. Synthesis, Characterization, and Reactivity of HRh(CO)4. Inorg. Chem. 1981, 20, 249–254. 10.1021/ic50215a049. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...