Sensitive and Spectral Interference-Free Determination of Rhodium by Photochemical Vapor Generation Inductively Coupled Plasma Mass Spectrometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39924740
PubMed Central
PMC11840798
DOI
10.1021/acs.analchem.4c05921
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A sensitive method for Rh determination was developed by coupling photochemical vapor generation (PVG) for sample introduction to inductively coupled plasma mass spectrometry (ICPMS). PVG was conducted in a thin-film flow-through photoreactor operated in a flow injection mode from a photochemical medium comprising 10 M HCOOH. PVG efficiency was substantially enhanced by the addition of 10 mg L-1 Cu2+ and 5 mg L-1 Co2+ as mediators as well as 50 mM NaNO3. The volatile product (likely Rh(CO)4H) was found to be less stable when in prolonged contact with the liquid medium at the output from the photoreactor. Hence, further enhancement was achieved by introducing an Ar carrier gas near the exit of the photoreactor to minimize the interaction of volatile species with the liquid medium. Despite PVG efficiency reaching only 15%, measurement at the ultratrace level (20 ng L-1) was characterized by very good repeatability of peak area response (2.9%) and outstanding limits of detection (13 pg L-1, 6.5 fg absolute) using He in the collision cell. Interferences from potential coexisting metals, inorganic acids, and their anions were investigated. Accuracy was verified by analysis of OREAS 684 (Platinum Group Element Ore) and SRM 2556 (Used Auto Catalyst) following peroxide fusion for sample preparation. Application to the direct analysis of real river and lake water samples and reference materials AQUA-1 and SLRS-6 demonstrated excellent selectivity of the PVG-ICPMS methodology over conventional pneumatic nebulization-ICP(MS)/MS, the results of which were seriously biased by polyatomic interferences, especially from Sr and Cu, despite the use of various reaction/collision cell modes.
Zobrazit více v PubMed
Hughes A. E.; Haque N.; Northey S. A.; Giddey S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 9310.3390/resources10090093. DOI
Cobelo-García A.; Filella M.; Croot P.; Frazzoli C.; Du Laing G.; Ospina-Alvarez N.; Rauch S.; Salaun P.; Schäfer J.; Zimmermann S. COST action TD1407: network on technology-critical elements (NOTICE)-from environmental processes to human health threats. Environ. Sci. Pollut. Res. 2015, 22, 15188–15194. 10.1007/s11356-015-5221-0. PubMed DOI PMC
Mitra A.; Sen I. S. Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination. Geochim. Cosmochim. Acta 2017, 216, 417–432. 10.1016/j.gca.2017.08.025. DOI
Colombo C.; Monhemius A. J.; Plant J. A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008, 71, 722–730. 10.1016/j.ecoenv.2007.11.011. PubMed DOI
Ding Y.; Zhang S.; Liu B.; Zheng H.; Chang C.; Ekberg C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 2019, 141, 284–298. 10.1016/j.resconrec.2018.10.041. DOI
Yan J.; Wei J.; Zhang F.; Zhang X.; He Z.; Xie F.; Hua X.; Zhang B. Comprehensive review on recovery of platinum group metals from spent automotive catalysts by metal capture technology: Present progress and outlook. J. Environ. Chem. Eng. 2024, 12, 11401710.1016/j.jece.2024.114017. DOI
Ojeda C. B.; Rojas F. S. Determination of rhodium: Since the origins until today: ICP-OES and ICP-MS. Talanta 2007, 71, 1–12. 10.1016/j.talanta.2006.04.024. PubMed DOI
Grebneva-Balyuk O. N.; Kubrakova I. V. Determination of Platinum Group Elements in Geological Samples by Inductively Coupled Plasma Mass Spectrometry: Possibilities and Limitations. J. Anal. Chem. 2020, 75, 275–285. 10.1134/S1061934820030065. DOI
Bolea-Fernandez E.; Balcaen L.; Resano M.; Vanhaecke F. Overcoming spectral overlap via inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). A tutorial review. J. Anal. At. Spectrom. 2017, 32, 1660–1679. 10.1039/C7JA00010C. DOI
Vapor Generation Techniques for Trace Element Analysis. Fundamental Aspects; D′Ulivo A.; Sturgeon R. E., Eds.; Elsevier, 2022.
Sturgeon R. E. Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry. J. Anal. At. Spectrom. 2017, 32, 2319–2340. 10.1039/C7JA00285H. DOI
Leonori D.; Sturgeon R. E. A unified approach to mechanistic aspects of photochemical vapor generation. J. Anal. At. Spectrom. 2019, 34, 636–654. 10.1039/C8JA00354H. DOI
Hu J.; Li C.; Zhen Y.; Chen H.; He J.; Hou X. Current advances of chemical vapor generation in non-tetrahydroborate media for analytical atomic spectrometry. TrAC, Trends Anal. Chem. 2022, 155, 11667710.1016/j.trac.2022.116677. DOI
Zhen Y.; Chen H.; Zhang M.; Hu J.; Hou X. Cadmium and cobalt ions enhanced-photochemical vapor generation for determination of trace rhenium by ICP-MS. Appl. Spectrosc. Rev. 2022, 57, 318–337. 10.1080/05704928.2021.1878368. DOI
Musil S.; Jeníková E.; Vyhnanovský J.; Sturgeon R. E. Highly Efficient Photochemical Vapor Generation for Sensitive Determination of Iridium by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2023, 95, 3694–3702. 10.1021/acs.analchem.2c04660. PubMed DOI PMC
Musil S.; Vyhnanovský J.; Sturgeon R. E. Ultrasensitive Detection of Ruthenium by Coupling Cobalt and Cadmium Ion-Assisted Photochemical Vapor Generation to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2021, 93, 16543–16551. 10.1021/acs.analchem.1c03739. PubMed DOI
Yang Q.; Chen H.; Hu J.; Huang K.; Hou X. Simultaneous Detection of Ruthenium and Osmium by Photochemical Vapor Generation-Inductively Coupled Plasma-Mass Spectrometry. Anal. Chem. 2022, 94, 593–599. 10.1021/acs.analchem.1c03357. PubMed DOI
Jeníková E.; Nováková E.; Hraníček J.; Musil S. Ultra-sensitive speciation analysis of tellurium by manganese and iron assisted photochemical vapor generation coupled to ICP-MS/MS. Anal. Chim. Acta 2022, 1201, 33963410.1016/j.aca.2022.339634. PubMed DOI
Gao Y.; Xu M.; Sturgeon R. E.; Mester Z.; Shi Z.; Galea R.; Saull P.; Yang L. Metal Ion-Assisted Photochemical Vapor Generation for the Determination of Lead in Environmental Samples by Multicollector-ICPMS. Anal. Chem. 2015, 87, 4495–4502. 10.1021/acs.analchem.5b00533. PubMed DOI
Hu J.; Chen H.; Hou X.; Jiang X. Cobalt and Copper Ions Synergistically Enhanced Photochemical Vapor Generation of Molybdenum: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2019, 91, 5938–5944. 10.1021/acs.analchem.9b00337. PubMed DOI
Šoukal J.; Sturgeon R. E.; Musil S. Efficient Photochemical Vapor Generation of Molybdenum for ICPMS Detection. Anal. Chem. 2018, 90, 11688–11695. 10.1021/acs.analchem.8b03354. PubMed DOI
Vyhnanovský J.; Sturgeon R. E.; Musil S. Cadmium Assisted Photochemical Vapor Generation of Tungsten for ICPMS detection. Anal. Chem. 2019, 91, 13306–13312. 10.1021/acs.analchem.9b04241. PubMed DOI
Hu J.; Yu Y.; Xiao Z.; Gao Y. Photochemical vapor generation of Zinc and Gallium. Microchem. J. 2023, 193, 10917810.1016/j.microc.2023.109178. DOI
He H.; Peng X.; Yu Y.; Shi Z.; Xu M.; Ni S.; Gao Y. Photochemical Vapor Generation of Tellurium: Synergistic Effect from Ferric Ion and Nano-TiO2. Anal. Chem. 2018, 90, 5737–5743. 10.1021/acs.analchem.8b00022. PubMed DOI
de Oliveira R. M.; Borges D. L. G. UV photochemical vapor generation of noble metals (Au, Ir, Pd, Pt and Rh): a feasibility study using inductively coupled plasma mass spectrometry and seawater as a test matrix. J. Anal. At. Spectrom. 2018, 33, 1700–1706. 10.1039/C8JA00179K. DOI
de Oliveira R. M.; Borges D. L. G.; Grinberg P.; Sturgeon R. E. High-efficiency photoreductive vapor generation of osmium. J. Anal. At. Spectrom. 2021, 36, 2097–2106. 10.1039/D1JA00192B. DOI
Vyhnanovský J.; Yildiz D.; Štádlerová B.; Musil S. Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchem. J. 2021, 164, 10599710.1016/j.microc.2021.105997. DOI
Dong L.; Chen H.; Ning Y.; He Y.; Yu Y.; Gao Y. Vanadium Species-Assisted Photochemical Vapor Generation for Direct Detection of Trace Tellurium with Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2022, 94, 4770–4778. 10.1021/acs.analchem.1c05525. PubMed DOI
Nakazato T.; Tao H. A High-Efficiency Photooxidation Reactor for Speciation of Organic Arsenicals by Liquid Chromatography–Hydride Generation–ICPMS. Anal. Chem. 2006, 78, 1665–1672. 10.1021/ac051783f. PubMed DOI
Guo X.; Sturgeon R. E.; Mester Z.; Gardener G. K. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids. Environ. Sci. Technol. 2003, 37, 5645–5650. 10.1021/es034418j. PubMed DOI
Rybínová M.; Červený V.; Rychlovský P. UV-photochemical vapour generation with in situ trapping in a graphite tube atomizer for ultratrace determination of selenium. J. Anal. At. Spectrom. 2015, 30, 1752–1763. 10.1039/C5JA00173K. DOI
Rybínová M.; Musil S.; Červený V.; Vobecký M.; Rychlovský P. UV-photochemical vapor generation of selenium for atomic absorption spectrometry: Optimization and Se-75 radiotracer efficiency study. Spectrochim. Acta, Part B 2016, 123, 134–142. 10.1016/j.sab.2016.08.009. DOI
Yu Y.; Hu J.; Zhao X.; Liu J.; Gao Y. Photochemical vapor generation for germanium: synergistic effect from cobalt/chloride ions and air-liquid interfaces. Anal. Bioanal. Chem. 2022, 414, 5709–5717. 10.1007/s00216-022-04126-z. PubMed DOI
Duan H.; Gong Z.; Yang S. Online photochemical vapour generation of inorganic tin for inductively coupled plasma mass spectrometric detection. J. Anal. At. Spectrom. 2015, 30, 410–416. 10.1039/C4JA00249K. DOI
Zhang Y.; Chen H.; Hu J.; Hou X. Highly Efficient Photochemical Vapor Generation for Sensitive Determination of Trace Inorganic Tin by Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc. 2023, 44, 385–391. 10.46770/AS.2023.267. DOI
Zhu Z.; He D.; Huang C.; Zheng H.; Zhang S.; Hu S. High-efficiency photooxidation vapor generation of osmium for determination by inductively coupled plasma-optical emission spectrometry. J. Anal. At. Spectrom. 2014, 29, 506–511. 10.1039/c3ja50323b. DOI
Gao Y.; Li S.; He H.; Li T.; Yu T.; Liu R.; Ni S.; Shi Z. Sensitive determination of osmium in natural waters by inductively coupled plasma mass spectrometry after photochemical vapor generation. Microchem. J. 2017, 130, 281–286. 10.1016/j.microc.2016.09.017. DOI
Pagliano E.; Vyhnanovský J.; Musil S.; de Oliveira R. M.; Forczek S. T.; Sturgeon R. E. GC-MS exploration of photochemically generated species of Os, W and Ru from reductive and oxidative media. J. Anal. At. Spectrom. 2022, 37, 528–534. 10.1039/D1JA00448D. DOI
Guo X.; Sturgeon R. E.; Mester Z.; Gardner G. J. Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Anal. Chem. 2004, 76, 2401–2405. 10.1021/ac0353536. PubMed DOI
Jeníková E.; Vyhnanovský J.; Hašlová K.; Sturgeon R. E.; Musil S. Efficient Photochemical Vapor Generation from Low Concentration Formic Acid Media. Anal. Chem. 2024, 96, 1241–1250. 10.1021/acs.analchem.3c04472. PubMed DOI PMC
Payette M.The Determination of Platinum, Palladium and Rhodium in Autocatalyst: an Exploration of Sample Preparation Techniques for the Rapid Sequential Multi-Elemental ICP-MS Analysis. Ph.D. Thesis, Laurentian University of Sudbury, 1997. https://central.bac-lac.gc.ca/.item?id=MQ31458&op=pdf&app=Library&oclc_number=46571305. (accessed January 04, 2025).
Zheng C.; Sturgeon R. E.; Brophy C. S.; He S.; Hou X. High-Yield UV-Photochemical Vapor Generation of Iron for Sample Introduction with Inductively Coupled Plasma Optical Emission Spectrometry. Anal. Chem. 2010, 82, 2996–3001. 10.1021/ac100059b. PubMed DOI
Grinberg P.; Sturgeon R. E.; Gardner G. Identification of volatile iron species generated by UV photolysis. Microchem. J. 2012, 105, 44–47. 10.1016/j.microc.2012.05.036. DOI
Deng X.; Dong L.; Chen H.; Wang W.; Yu Y.; Gao Y. Sensitive Determination of Arsenic by Photochemical Vapor Generation with Inductively Coupled Plasma Mass Spectrometry: Synergistic Effect from Antimony and Cadmium. Anal. Chem. 2024, 96, 652–660. 10.1021/acs.analchem.3c02331. PubMed DOI
Šoukal J.; Musil S. Detailed evaluation of conditions of photochemical vapor generation for sensitive determination of nickel in water samples by ICP-MS detection. Microchem. J. 2022, 172, 10696310.1016/j.microc.2021.106963. DOI
Lopes G. S.; Sturgeon R. E.; Grinberg P.; Pagliano E. Evaluation of approaches to the abatement of nitrate interference with photochemical vapor generation. J. Anal. At. Spectrom. 2017, 32, 2378–2390. 10.1039/C7JA00311K. DOI
Cuello-Nuñez S.; Abad-Alvaro I.; Bartczak D.; Busto M. E. D.; Ramsay D. A.; Pellegrino F.; Goenaga-Infante H. The accurate determination of number concentration of inorganic nanoparticles using spICP-MS with the dynamic mass flow approach. J. Anal. At. Spectrom. 2020, 35, 1832–1839. 10.1039/C9JA00415G. DOI
Yu Y.; Chen H.; Zhao Q.; Mou Q.; Dong L.; Wang R.; Shi Z.; Gao Y. Impact of Gas-Liquid Interface on Photochemical Vapor Generation. Anal. Chem. 2021, 93, 3343–3352. 10.1021/acs.analchem.9b05634. PubMed DOI
Dong L.; Wang W.; Ning Y.; Deng X.; Gao Y. Detection of trace antimony by vanadium (IV) ion assisted photochemical vapor generation with inductively coupled plasma mass spectrometry measurement. Anal. Chim. Acta 2023, 1251, 34100610.1016/j.aca.2023.341006. PubMed DOI
Adams G. E.; Hart E. J. Radiolysis and Photolysis of Aqueous Formic Acid. Carbon Monoxide Formation. J. Am. Chem. Soc. 1962, 84, 3994–3999. 10.1021/ja00880a003. DOI
Gao Y.; Sturgeon R. E.; Mester Z.; Pagliano E.; Galea R.; Saull P.; Hou X.; Yang L. On-line UV photochemical generation of volatile copper species and its analytical application. Microchem. J. 2016, 124, 344–349. 10.1016/j.microc.2015.09.020. DOI
Grinberg P.; Mester Z.; Sturgeon R. E.; Ferretti A. Generation of volatile cobalt species by UV photoreduction and their tentative identification. J. Anal. At. Spectrom. 2008, 23, 583–587. 10.1039/b717216h. DOI
Yu Y.; Zhao Q.; Bao H.; Mou Q.; Shi Z.; Chen Y.; Gao Y. Determination of Trace Bismuth in Environmental Waters by ICP-MS with Cobalt Ion-Assisted Photochemical Vapour Generation. Geostand. Geoanal. Res. 2020, 44, 617–627. 10.1111/ggr.12319. DOI
Wang J.; Liu X.; Beusen A. H. W.; Middelburg J. J. Surface-Water Nitrate Exposure to World Populations Has Expanded and Intensified during 1970–2010. Environ. Sci. Technol. 2023, 57, 19395–19406. 10.1021/acs.est.3c06150. PubMed DOI PMC
European Environment Agency . Nitrate in Groundwater in Europe 2024https://www.eea.europa.eu/en/analysis/indicators/nitrate-in-groundwater-8th-eap. (accessed January 04, 2025).
Yeghicheyan D.; Grinberg P.; Alleman L. Y.; Belhadj M.; Causse L.; Chmeleff J.; Cordier L.; Djouraev I.; Dumoulin D.; Dumont J.; et al. Collaborative determination of trace element mass fractions and isotope ratios in AQUA-1 drinking water certified reference material. Anal. Bioanal. Chem. 2021, 413, 4959–4978. 10.1007/s00216-021-03456-8. PubMed DOI
Yeghicheyan D.; Aubert D.; Bouhnik-Le Coz M.; Chmeleff J.; Delpoux S.; Djouraev I.; Granier G.; Lacan F.; Piro J.-L.; Rousseau T.; et al. A New Interlaboratory Characterisation of Silicon, Rare Earth Elements and Twenty-Two Other Trace Element Concentrations in the Natural River Water Certified Reference Material SLRS-6 (NRC-CNRC). Geostand. Geoanal. Res. 2019, 43, 475–496. 10.1111/ggr.12268. DOI
Yamada N. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations. Spectrochim. Acta, Part B 2015, 110, 31–44. 10.1016/j.sab.2015.05.008. DOI
Hieber W.; Lagally H. Über Metallcarbonyle. XLV. Das Rhodium im System der Metallcarbonyle. Z. Anorg. Allg. Chem. 1943, 251, 96–113. 10.1002/zaac.19432510110. DOI
Li C.; Widjaja E.; Chew W.; Garland M. Rhodium tetracarbonyl hydride: The elusive metal carbonyl hydride. Angew. Chem. 2002, 114, 3939–3943. 10.1002/1521-3757(20021018)114:20<3939::AID-ANGE3939>3.0.CO;2-N. PubMed DOI
Vidal J. L.; Walker W. E. Rhodium Carbonyl Cluster Chemistry under High Pressure of Carbon Monoxide and Hydrogen. 3. Synthesis, Characterization, and Reactivity of HRh(CO)4. Inorg. Chem. 1981, 20, 249–254. 10.1021/ic50215a049. DOI