Ambient ionization mass spectrometry allows for analysis of samples in their natural state, i.e., with no sample pre-treatment. It can be viewed as a fast, simple, and economical analysis, but its main disadvantages include a lower analytical performance due to the presence of complex sample matrix and the lack of chromatographic separation prior to the introduction of the sample into the mass spectrometer. Here we present an application of two ambient ionization mass spectrometry techniques, i.e., Desorption Atmospheric Pressure Photoionization and Dielectric Barrier Discharge Ionization, for the analysis of known Selective Androgen Receptor Modulators, which represent common compounds of abuse in professional and semiprofessional sport. Eight real samples of illegal food supplements, seized by the local law enforcement, were used to test the performance of the ambient mass spectrometry and the results were validated against a newly developed targeted LC-UV-MS/MS method performed in multiple reaction monitoring mode with an external calibration for each analyte. In order to decide whether or not the compound can be declared as present, we proposed a system of rules for the interpretation of the obtained spectra. The criteria are based on mass spectrum matching (5-10 ppm accuracy from the theoretical exact mass and a correct isotopic pattern), duration of the mass signal (three or five consecutive scans, depending on the instrumentation used), and intensity above the background noise (threefold increase in intensity and absolute intensity above 5E4 or 1E5, depending on the instrumentation). When applying these criteria, good agreement was found between the tested methods. Ambient ionization techniques were effective at detecting SARMs at pharmacologically relevant doses, i.e., approximately above 1 mg per capsule, although they may fail to detect lower levels or isomeric species. It is demonstrated that when adhering to a set of clear and consistent rules, ambient mass spectrometry can be employed as a qualitative technique for the screening of illegal SARMs with sufficient confidence and without the necessity to perform a regular LC-MS analysis.
- MeSH
- Receptors, Androgen * metabolism MeSH
- Androgen Receptor Antagonists analysis MeSH
- Chromatography, Liquid methods MeSH
- Doping in Sports prevention & control MeSH
- Mass Spectrometry methods MeSH
- Humans MeSH
- Substance Abuse Detection methods MeSH
- Dietary Supplements analysis MeSH
- Tandem Mass Spectrometry methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
- MeSH
- Food Analysis MeSH
- Humans MeSH
- Marine Toxins MeSH
- Mycotoxins * MeSH
- Reference Standards MeSH
- Tandem Mass Spectrometry * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Nonaqueous capillary electrophoresis (NACE) using methanol (MeOH) as a solvent of the BGEs and quantum mechanical density functional theory (DFT) have been applied to determine the thermodynamic acidity (ionization) constants (pKa ) of mono- and diaza[5]helicenes, mono- and diaza[6]helicenes, and their dibenzo derivatives in MeOH and water. First, the mixed acidity constants, pKa,MeOHmix${\rm{p}}K_{{\rm{a,MeOH}}}^{{\rm{mix}}}$ , of ionogenic pyridinium groups of azahelicenes and their derivatives in MeOH were obtained by nonlinear regression analysis of pH dependence of their effective electrophoretic mobilities. The effective mobilities were measured by NACE in a large series of methanolic BGEs within a wide conventional pH range (pHMeOH 1.6-12.0) and at ambient temperature (21-26°C) in a home-made CE device. Prior to mixed acidity constant calculation, the effective mobilities were corrected to reference temperature (25°C) and constant ionic strength (25 mM). Then, the mixed acidity constants were recalculated to the thermodynamic acidity constants pKa,MeOH by the Debye-Hückel theory of nonideality of electrolyte solutions. Finally, from the methanolic thermodynamic pKa,MeOH values, the aqueous thermodynamic pKa,H2O${\rm{p}}{K_{{\rm{a,}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}}$ constants were estimated using the empirical relations between methanolic and aqueous acidity constants derived for structurally related pyridine derivatives. Depending on the number and position of the nitrogen atoms in their molecules, the analyzed azahelicenes were found to be weak to moderate bases with methanolic pKa,MeOH in the range 2.01-8.75 and with aqueous pKa,H2O${\rm{p}}{K_{{\rm{a,}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}}$ in the range 1.67-8.28. The thermodynamic pKa,MeOH obtained by the DFT calculations were in a good agreement with those determined experimentally by NACE.
We developed and evaluated a novel analytical method combining ambient ionization technique - laser diode thermal desorption with chemical ionization (LDTD-APCI) and tandem mass spectrometry detection. The LDTD/APCI-MS/MS method was developed for determination of representative pharmaceuticals from different classes (carbamazepine, sulfamethoxazole, irbesartan, fexofenadine) in leachate samples from soil sorption experimentation. We then optimized laser pattern, laser energy and spiked sample volume, which are crucial parameters for this LDTD/APCI-MS/MS method. We further identified utility of a chelating agent (Na2-EDTA) to obtain the highest achievable and reproducible signal of target analytes. Achieved method performance parameters (LODs, LOQs, trueness and precision) were comparable with those obtained from LC-MS/MS. However, application of this novel LDTD/APCI-MS/MS method reduced analysis time by two orders of magnitude (to 12 s), compared to more conventional LC-MS/MS approaches, without use of organic solvents. We expect this novel method will reduce costs and increase throughput for future analyses of pharmaceuticals in the environment while advancing a timely principle of green chemistry.
- Publication type
- Journal Article MeSH
RATIONALE: Hyphenation of atmospheric pressure chemical ionization (APCI) mass spectrometry with capillary and micro high-performance liquid chromatography (HPLC) is attractive for many applications, but reliable ion sources dedicated to these conditions are still missing. There are a number of aspects to consider when designing such an ion source, including the susceptibility of the ionization processes to ambient conditions. Here we discuss the importance of ion source housing for APCI at low flow rates. METHODS: Selected compounds dissolved in various solvents were used to study ionization reactions at 10 μL/min flow rate. APCI spectra were generated using the Ion Max-S source (Thermo Fisher Scientific) operated with or without the ion source housing. RESULTS: The APCI spectra of most compounds measured in the open and enclosed ion sources were markedly different. The differences were explained by water and oxygen molecules that entered the plasma region of the open ion source. Water tended to suppress charge transfer processes while oxygen diminished electron capture reactions and prevented the formation of acetonitrile-related radical cations useful for localizing double bonds in lipids. The effects associated with the ion source housing were significantly less important for compounds that are easy to protonate or deprotonate. CONCLUSIONS: The use of ion source housing prevented alternative ionization channels leading to unwanted or unexpected ions. Compared with the conventional flow rate mode (1 mL/min), the effects of ambient air components were significantly higher at 10 μL/min, emphasizing the need for ion source housing in APCI sources dedicated to low flow rates.
- Publication type
- Journal Article MeSH
In recent decades, the non-thermal plasma, i.e. partially or completely ionized gas produced by electric discharges at ambient temperature, has become of interest for its microbiocidal properties with potential of use in the food industry or medicine. Recently, this interest focuses not only on the planktonic forms of microorganisms but also on their biofilms. The works in this interdisciplinary field are summarized in this review. The wide range of biofilm-plasma interactions is divided into studies of general plasma action on bacteria, on biofilm and on its oral and dental application; a short overview of plasma instrumentation is also included. In addition, not only biofilm combating but also an important area of biofilm prevention is discussed. Various DC discharges of the point-to-plane type. Author's photograph, published in Khun et al. (Plasma Sources Sci Technol 27:065002, 2018).
- MeSH
- Bacteria growth & development radiation effects MeSH
- Biofilms growth & development radiation effects MeSH
- Disinfection instrumentation methods MeSH
- Wound Healing MeSH
- Fungi radiation effects MeSH
- Plasma Gases pharmacology MeSH
- Food Industry MeSH
- Dental Materials pharmacology MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Transferrin is synthetized in the liver and is the most important iron-transport carrier in the human body. Severe alcohol consumption leads to alterations in glycosylation of transferrin. Mass spectrometry can provide fast detection and quantification of transferrin isoforms because they have different molecular masses. In this study, we used antibody chips in combination with MALDI-TOF MS for the detection and quantification of transferrin isoforms. METHODS: Protein chips were prepared by functionalization of indium tin oxide glass using ambient ion soft landing of electrosprayed antitransferrin antibody. Two microliters of patient serum was applied on the antibody-modified spots, and after incubation, washing, and matrix deposition, transferrin isoforms were detected by MALDI-TOF MS. Peak intensities of each transferrin form were used to calculate total carbohydrate-deficient transferrin (CDT). The CDT values obtained by the MALDI chip method were compared with the results obtained by a standard capillary electrophoresis (CE). RESULTS: The chip-based MALDI-TOF MS method was used for enrichment and detection of CDT from human serum. A sample cohort from 186 patients was analyzed. Of these samples, 44 were positively identified as belonging to alcoholic patients, whereas 142 were negative by the MALDI chip approach. The correlation of the data obtained by the CE and the chip-based MALDI was r = 0.986, 95% CI. CONCLUSIONS: Functionalized MALDI chips modified by antitransferrin antibody prepared by ambient ion soft landing were successfully used for detection and quantification of CDT from human sera.
- MeSH
- Biomarkers blood MeSH
- Humans MeSH
- Reference Standards MeSH
- Reproducibility of Results MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization instrumentation MeSH
- Case-Control Studies MeSH
- Transferrin analogs & derivatives metabolism standards MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Recent studies show that the haptoglobin phenotype in individuals with diabetes mellitus is an important factor for predicting the risk of myocardial infarction, cardiovascular death, and stroke. Current methods for haptoglobin phenotyping include PCR and gel electrophoresis. A need exists for a reliable method for high-throughput clinical applications. Mass spectrometry (MS) can in principle provide fast phenotyping because haptoglobin α 1 and α 2, which define the phenotype, have different molecular masses. Because of the complexity of the serum matrix, an efficient and fast enrichment technique is necessary for an MS-based assay. METHODS: MALDI plates were functionalized by ambient ion landing of electrosprayed antihaptoglobin antibody. The array was deposited on standard indium tin oxide slides. Fast immunoaffinity enrichment was performed in situ on the plate, which was further analyzed by MALDI-TOF MS. The haptoglobin phenotype was determined from the spectra by embedded software script. RESULTS: The MALDI mass spectra showed ion signals of haptoglobin α subunits at m/z 9192 and at m/z 15 945. A cohort of 116 sera was analyzed and the reliability of the method was confirmed by analyzing the identical samples by Western blot. One hundred percent overlap of results between the direct immunoaffinity desorption/ionization MS and Western Blot analysis was found. CONCLUSIONS: MALDI plates modified by antihaptoglobin antibody using ambient ion landing achieve low nonspecific interactions and efficient MALDI ionization and are usable for quick haptoglobin phenotyping.
- MeSH
- Chromatography, Affinity MeSH
- Phenotype MeSH
- Haptoglobins analysis immunology MeSH
- Humans MeSH
- Surface Properties MeSH
- Antibodies immunology MeSH
- Software MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Blotting, Western MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
RATIONALE: On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. METHODS: Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). RESULTS: The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. CONCLUSIONS: DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research.
- MeSH
- Aerosols analysis chemistry MeSH
- Atmosphere MeSH
- Chromatography, Liquid methods MeSH
- Mass Spectrometry instrumentation methods MeSH
- Caprylates analysis chemistry MeSH
- Carboxylic Acids analysis chemistry MeSH
- Oxidation-Reduction MeSH
- Terpenes analysis chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this study, direct analysis in real time-mass spectrometry (DART-MS) was assessed for the analysis of various pharmaceutical formulations with intention to summarize possible applications for the routine pharmaceutical development. As DART is an ambient ionization technique, it allows direct analysis of pharmaceutical samples in solid or liquid form without complex sample preparation, which is often the most time-consuming part of the analytical method. This makes the technique suitable for many application fields, including pharmaceutical drug development. DART mass spectra of more than twenty selected tablets and other common pharmaceutical formulations, i.e. injection solutions, ointments and suppositories developed in the pharmaceutical industry during several recent years are presented. Moreover, as thin-layer chromatography (TLC) is still very popular for the monitoring of the reactions in the synthetic chemistry, several substances were analyzed directly from the TLC plates to demonstrate the simplicity of the technique. Pure substance solutions were spotted onto a TLC plate and then analyzed with DART without separation. This was the first DART-MS study of pharmaceutical dosage forms using DART-Orbitrap combination. The duration of sample analysis by the DART-MS technique lasted several seconds, allowing enough time to collect sufficient number of data points for compound identification. The experimental setup provided excellent mass accuracy and high resolution of the mass spectra which allowed unambiguous identification of the compounds of interest. Finally, DART mass spectrometry was also used for the monitoring of the selected impurity distribution in the atorvastatin tablets. These measurements demonstrated DART to be robust ionization technique, which provided easy-to-interpret mass spectra for the broad range of compounds. DART has high-throughput potential for various types of pharmaceutical analyses and therefore eliminates the time for sample cleanup and chromatographic separation.
- MeSH
- Chromatography, Thin Layer methods MeSH
- Mass Spectrometry methods MeSH
- Pharmaceutical Preparations analysis chemistry MeSH
- Drug Discovery * MeSH
- Excipients chemistry MeSH
- Tablets chemistry MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH