Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 ES015326
NIEHS NIH HHS - United States
T32 ES007126
NIEHS NIH HHS - United States
PubMed
24014931
PubMed Central
PMC3763853
DOI
10.1039/c3ja50021g
Knihovny.cz E-zdroje
- Klíčová slova
- Arsenic, Hydride generation, Inductively coupled plasma mass spectrometry, Speciation analysis,
- Publikační typ
- časopisecké články MeSH
An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at -196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL-1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL-1 total As was performed. The concentrations of methylated As species in tens of pg mL-1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species.
Zobrazit více v PubMed
Rehman K, Naranmandura H. Metallomics. 2012;4:881–892. PubMed
Francesconi KA, Kuehnelt D. Analyst. 2004;129:373–395. PubMed
Gong ZL, Lu XF, Ma MS, Watt C, Le XC. Talanta. 2002;58:77–96. PubMed
Ammann AA. Am J Anal Chem. 2011;2:27–45.
Komorowicz I, Baralkiewicz D. Talanta. 2011;84:247–261. PubMed
Raab A, Meharg AA, Jaspars M, Genney DR, Feldmann J. J Anal At Spectrom. 2004;19:183–190.
Šlejkovec Z, Falnoga I, Goessler W, van Elteren JT, Raml R, Podgornik H, Èernelè P. Anal Chim Acta. 2008;607:83–91. PubMed
Currier J, Saunders JR, Ding L, Bodnar WM, Cable P, Matoušek T, Creed JT, Stýblo M. J Anal At Spectrom. 2013;2013 doi: 10.1039/C3JA30380B. Accepted Manuscript. PubMed DOI PMC
Stefanka Z, Koellensperger G, Stingeder G, Hann S. J Anal At Spectrom. 2006;21:86–89.
Kumar AR, Riyazuddin P. Int J Environ An Ch. 2007;87:469–500.
Ellwood MJ, Maher WA. J Anal At Spectrom. 2002;17:197–203.
Tseng CM, Amouroux D, Brindle ID, Donard OFX. J Environ Monitor. 2000;2:603–612. PubMed
Wuerfel O, Thomas F, Schulte MS, Hensel R, Diaz-Bone RA. Appl Organomet Chem. 2012;26:94–101.
Diaz-Bone RA, Hitzke M. J Anal At Spectrom. 2008;23:861–870.
Regmi R, Milne BF, Feldmann J. Anal Bioanal Chem. 2007;388:775–782. PubMed
Douillet C, Currier J, Saunders J, Bodnar WM, Matoušek T, Stýblo M. Toxicol App Pharm. 2013;267:11–15. PubMed PMC
Matoušek T, Hernández-Zavala A, Svoboda M, Langerová L, Adair BM, Drobná Z, Thomas DJ, Stýblo M, Dědina J. Spectrochim Acta B. 2008;63:396–406. PubMed PMC
Hernández-Zavala A, Matoušek T, Drobna Z, Paul DS, Walton FS, Adair BM, Dědina J, Thomas DJ, Stýblo M. J Anal At Spectrom. 2007;23:342–351. PubMed PMC
Ding L, Saunders RJ, Drobná Z, Walton FS, Xun P, Thomas DJ, Stýblo M. Toxicol App Pharm. 2012;264:121–130. PubMed PMC
Hernández-Zavala A, Valenzuela OL, Matoušek T, Drobná Z, Dědina J, Garcia-Vargas GG, Thomas DJ, Del Razo LM, Stýblo M. Environ Health Persp. 2008;116:1656–1660. PubMed PMC
Moraes DP, Svoboda M, Matoušek T, Flores EMM, Dědina J. J Anal At Spectrom. 2012;27:1734–1742.
Currier JM, Svoboda M, de Moraes DP, Matoušek T, Dědina J, Stýblo M. Chem Res Toxicol. 2011;24:478–480. PubMed PMC
Currier JM, Svoboda M, Matoušek T, Dědina J, Stýblo M. Metallomics. 2011;3:1347–1354. PubMed PMC
Taurková P, Svoboda M, Musil S, Matoušek T. J Anal At Spectrom. 2011;26:220–223.
Musil S, Matoušek T. Spectrochim Acta B. 2008;63:685–691. PubMed PMC
Massart DL, Vandeginste BG, Buydens LM, De Jong S, Lewi PJ, Smeyers J. Handbook of Chemometrics, Verbeke. 1999. p. 198.
Tseng CM, Amouroux D, Brindle ID, Donard OFX. J Environ Monitor. 2000;2:603–612. PubMed
Hsiung TM, Wang JM. J Anal At Spectrom. 2004;19:923–928.
Nakazato T, Tao H, Taniguchi T, Isshiki K. Talanta. 2002;58:121–132. PubMed
Gong ZL, Lu XF, Cullen WR, Le XC. J Anal At Spectrom. 2001;16:1409–1413.
Hippler J, Zdrenka R, Reichel RAD, Weber DG, Rozynek P, Johnen G, Dopp E, Hirner AV. J Anal At Spectrom. 2011;26:2396–2403.
Schmeisser E, Goessler W, Kienzl N, Francesconi KA. Anal Chem. 2004;76:418–423. PubMed
Ulivo AD’, Dědina J, Mester Z, Sturgeon RE, Wang Q, Welz B. Pure Appl Chem. 2011;83:1283–1340.
Ulivo AD’, Meija J, Mester Z, Pagliano E, Sturgeon R. Anal Bioanal Chem. 2012;66:740–747. PubMed
Sturgeon RE, Francesconi KA. Environ Chem. 2009;6:294–297.