A demethylation deficient isoform of the lysine demethylase KDM2A interacts with pericentromeric heterochromatin in an HP1a-dependent manner

. 2017 Sep 03 ; 8 (5) : 563-572. [epub] 20170817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28816576

Histone modifications have a profound impact on the chromatin structure and gene expression and their correct establishment and recognition is essential for correct cell functioning. Malfunction of histone modifying proteins is associated with developmental defects and diseases and detailed characterization of these proteins is therefore very important. The lysine specific demethylase KDM2A is a CpG island binding protein that has been studied predominantly for its ability to regulate CpG island-associated gene promoters by demethylating their H3K36me2. However, very little attention has been paid to the alternative KDM2A isoform that lacks the N-terminal demethylation domain, KDM2A-SF. Here we characterized KDM2A-SF more in detail and we found that, unlike the canonical full length KDM2A-LF isoform, KDM2A-SF forms distinct nuclear heterochromatic bodies in an HP1a dependent manner. Our chromatin immunoprecipitation experiments further showed that KDM2A binds to transcriptionally silent pericentromeric regions that exhibit high levels of H3K36me2. H3K36me2 is the substrate of the KDM2A demethylation activity and the high levels of this histone modification in the KDM2A-bound pericentromeric regions imply that these regions are occupied by the demethylation deficient KDM2A-SF isoform.

Erratum v

PubMed

Zobrazit více v PubMed

Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693-705; PMID:17320507; https://doi.org/10.1016/j.cell.2007.02.005 PubMed DOI

Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13(5):297-311; PMID:22473470 PubMed

Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 2015; 35:68-75; PMID:26496625; https://doi.org/10.1016/j.sbi.2015.09.007 PubMed DOI PMC

Vacik T, Raska I. Alternative intronic promoters in development and disease. Protoplasma 2017; 254(3):1201-6; PMID:28078440; https://doi.org/10.1007/s00709-016-1071-y PubMed DOI

Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 2008; 24(4):167-77; PMID:18329129; https://doi.org/10.1016/j.tig.2008.01.008 PubMed DOI

Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ. CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 2010; 38(2):179-90; PMID:20417597; https://doi.org/10.1016/j.molcel.2010.04.009 PubMed DOI PMC

Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006; 439(7078):811-6; PMID:16362057; https://doi.org/10.1038/nature04433 PubMed DOI

Zhou JC, Blackledge NP, Farcas AM, Klose RJ. Recognition of CpG island chromatin by KDM2A requires direct and specific interaction with linker DNA. Mol Cell Biol 2012; 32(2):479-89; PMID:22083960; https://doi.org/10.1128/MCB.06332-11 PubMed DOI PMC

Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128(4):707-19; PMID:17320508; https://doi.org/10.1016/j.cell.2007.01.015 PubMed DOI

Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 2012; 13(2):115-26; PMID:22266761; https://doi.org/10.1038/nrm3274 PubMed DOI PMC

Suzuki S, Murakami Y, Takahata S. H3K36 methylation state and associated silencing mechanisms. Transcription 2017; 8(1):26-31; PMID:27723431; https://doi.org/10.1080/21541264.2016.1246076 PubMed DOI PMC

Suzuki S, Kato H, Suzuki Y, Chikashige Y, Hiraoka Y, Kimura H, Nagao K, Obuse C, Takahata S, Murakami Y. Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Res 2016; 44(9):4147-62; PMID:26792892; https://doi.org/10.1093/nar/gkw008 PubMed DOI PMC

Li B, Jackson J, Simon MD, Fleharty B, Gogol M, Seidel C, Workman JL, Shilatifard A. Histone H3 lysine 36 dimethylation (H3K36me2) is sufficient to recruit the Rpd3s histone deacetylase complex and to repress spurious transcription. J Biol Chem 2009; 284(12):7970-6; PMID:19155214; https://doi.org/10.1074/jbc.M808220200 PubMed DOI PMC

Yu G, Wang J, Lin X, Diao S, Cao Y, Dong R, Wang L, Wang S, Fan Z. Demethylation of SFRP2 by histone demethylase KDM2A regulated osteo-/dentinogenic differentiation of stem cells of the apical papilla. Cell Prolif 2016; 49(3):330-40; PMID:27074224; https://doi.org/10.1111/cpr.12256 PubMed DOI PMC

Tanaka Y, Okamoto K, Teye K, Umata T, Yamagiwa N, Suto Y, Zhang Y, Tsuneoka M. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J 2010; 29(9):1510-22; PMID:20379134; https://doi.org/10.1038/emboj.2010.56 PubMed DOI PMC

Dhar SS, Alam H, Li N, Wagner KW, Chung J, Ahn YW, Lee MG. Transcriptional Repression of Histone Deacetylase 3 by the Histone Demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J Biol Chem 2014; 289(11):7483-96; PMID:24482232; https://doi.org/10.1074/jbc.M113.521625 PubMed DOI PMC

Wagner KW, Alam H, Dhar SS, Giri U, Li N, Wei Y, Giri D, Cascone T, Kim JH, Ye Y, et al.. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J Clin Invest 2013; 123(12):5231-46; PMID:24200691; https://doi.org/10.1172/JCI68642 PubMed DOI PMC

Gao R, Dong R, Du J, Ma P, Wang S, Fan Z. Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from apical papilla by de-repression of p15INK4B and p27Kip1. Mol Cell Biochem 2013; 379(1-2):115-22; PMID:23559091; https://doi.org/10.1007/s11010-013-1633-7 PubMed DOI

Du J, Ma Y, Ma P, Wang S, Fan Z. Demethylation of epiregulin gene by histone demethylase FBXL11 and BCL6 corepressor inhibits osteo/dentinogenic differentiation. Stem Cells 2013; 31(1):126-36; PMID:23074094; https://doi.org/10.1002/stem.1255 PubMed DOI

Lu L, Gao Y, Zhang Z, Cao Q, Zhang X, Zou J, Cao Y. Kdm2a/b Lysine Demethylases Regulate canonical wnt signaling by modulating the stability of nuclear beta-Catenin. Dev Cell 2015; 33(6):660-74; PMID:26004508; https://doi.org/10.1016/j.devcel.2015.04.006 PubMed DOI

Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M, Gudkov AV, Stark GR. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci U S A 2010; 107(1):46-51; PMID:20080798; https://doi.org/10.1073/pnas.0912493107 PubMed DOI PMC

Kawakami E, et al.. The histone demethylase fbxl11/kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev 2015; 135:31-42; PMID:25463925; https://doi.org/10.1016/j.mod.2014.10.001 PubMed DOI

Okamoto K, Tanaka Y, Tsuneoka M. SF-KDM2A binds to ribosomal RNA gene promoter, reduces H4K20me3 level, and elevates ribosomal RNA transcription in breast cancer cells. Int J Oncol 2017; 50(4):1372-1382; PMID:28350064; https://doi.org/10.3892/ijo.2017.3908 PubMed DOI

Liu H, Liu L, Holowatyj A, Jiang Y, Yang ZQ. Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer. Mol Carcinog 2016; 55(5):977-90; PMID:26207617; https://doi.org/10.1002/mc.22341 PubMed DOI PMC

Borgel J, Tyl M, Schiller K, Pusztai Z, Dooley CM, Deng W, Wooding C, White RJ, Warnecke T, Leonhardt H. KDM2A integrates DNA and histone modification signals through a CXXC/PHD module and direct interaction with HP1. Nucleic Acids Res 2016; 45(3):1114-1129; PMID:28180290; https://doi.org/10.1093/nar/gkw979 PubMed DOI PMC

Canzio D, Larson A, Narlikar GJ. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 2014; 24(6):377-86; PMID:24618358; https://doi.org/10.1016/j.tcb.2014.01.002 PubMed DOI PMC

Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 2010; 143(3):470-84; PMID:21029866; https://doi.org/10.1016/j.cell.2010.10.012 PubMed DOI PMC

Mosch K, Franz H, Soeroes S, Singh PB, Fischle W. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats. PLoS One 2011; 6(1):e15894; PMID:21267468; https://doi.org/10.1371/journal.pone.0015894 PubMed DOI PMC

Maison C, Bailly D, Roche D, Montes de Oca R, Probst AV, Vassias I, Dingli F, Lombard B, Loew D, Quivy JP, et al.. SUMOylation promotes de novo targeting of HP1alpha to pericentric heterochromatin. Nat Genet 2011; 43(3):220-7; PMID:21317888; https://doi.org/10.1038/ng.765 PubMed DOI

Eissenberg JC, Elgin SC. HP1a: a structural chromosomal protein regulating transcription. Trends Genet 2014; 30(3):103-10; PMID:24555990; https://doi.org/10.1016/j.tig.2014.01.002 PubMed DOI PMC

Muramatsu D, Kimura H, Kotoshiba K, Tachibana M, Shinkai Y. Pericentric H3K9me3 formation by HP1 interaction-defective histone methyltransferase Suv39h1. Cell Struct Funct 2016; 41(2):145-152; PMID:27733730; https://doi.org/10.1247/csf.16013 PubMed DOI

Maison C, Almouzni G. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 2004; 5(4):296-304; PMID:15071554; https://doi.org/10.1038/nrm1355 PubMed DOI

Frescas D, Guardavaccaro D, Kuchay SM, Kato H, Poleshko A, Basrur V, Elenitoba-Johnson KS, Katz RA, Pagano M. KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 2008; 7(22):3539-47; PMID:19001877; https://doi.org/10.4161/cc.7.22.7062 PubMed DOI PMC

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res 2002; 12(6):996-1006; PMID:12045153; https://doi.org/10.1101/gr.229102 PubMed DOI PMC

Dejardin J. Switching between Epigenetic states at Pericentromeric Heterochromatin. Trends Genet 2015; 31(11):661-72; PMID:26431676; https://doi.org/10.1016/j.tig.2015.09.003 PubMed DOI

Rosin LF, Mellone BG. Centromeres drive a hard bargain. Trends Genet 2017; 33(2):101-117; PMID:28069312; https://doi.org/10.1016/j.tig.2016.12.001 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9(7):676-82; PMID:22743772; https://doi.org/10.1038/nmeth.2019 PubMed DOI PMC

He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 2013; 15(4):373-84; PMID:23502314; https://doi.org/10.1038/ncb2702 PubMed DOI PMC

Boulard M, Edwards JR, Bestor TH. Abnormal X chromosome inactivation and sex-specific gene dysregulation after ablation of FBXL10. Epigenetics Chromatin 2016; 9:22; PMID:27252784; https://doi.org/10.1186/s13072-016-0069-1 PubMed DOI PMC

Abmayr SM, Yao T, Parmely T, Workman JL. Preparation of nuclear and cytoplasmic extracts from mammalian cells. Curr Protoc Mol Biol 2006. Chapter 12: p. Unit 12 1; PMID:18265374; https://doi.org/10.1002/0471142727.mb1201s75 PubMed DOI

Vacik T, Stubbs JL, Lemke G. A novel mechanism for the transcriptional regulation of Wnt signaling in development. Genes Dev 2011; 25(17):1783-95; PMID:21856776; https://doi.org/10.1101/gad.17227011 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...