Lysine Demethylase KDM2A Promotes Proteasomal Degradation of TCF/LEF Transcription Factors in a Neddylation-Dependent Manner
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Cooperatio - Oncology and Hematology
Charles University
PubMed
37998355
PubMed Central
PMC10670284
DOI
10.3390/cells12222620
PII: cells12222620
Knihovny.cz E-zdroje
- Klíčová slova
- KDM2A, TCF/LEF, canonical Wnt signaling, neddylation, ubiquitination,
- MeSH
- beta-katenin * metabolismus MeSH
- lysin * MeSH
- signální dráha Wnt MeSH
- zinkové prsty MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-katenin * MeSH
- lysin * MeSH
Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential for this pathway, the regulation of their intracellular levels is not completely understood. Here, we show that the lysine demethylase KDM2A promotes the proteasomal destabilization of TCF/LEFs independently of its demethylase domain. We found that the KDM2A-mediated destabilization of TCF/LEFs is dependent on the KDM2A zinc finger CXXC domain. Furthermore, we identified the C-terminal region of TCF7L2 and the CXXC domain of KDM2A as the domains responsible for the interaction between the two proteins. Our study is also the first to show that endogenous TCF/LEF proteins undergo KDM2A-mediated proteasomal degradation in a neddylation-dependent manner. Here, we reveal a completely new mechanism that affects canonical Wnt signaling by regulating the levels of TCF/LEF transcription factors through their KDM2A-promoted proteasomal degradation.
Zobrazit více v PubMed
Nusse R., Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI
Anastas J.N., Moon R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer. 2013;13:11–26. doi: 10.1038/nrc3419. PubMed DOI
Clevers H., Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–1205. doi: 10.1016/j.cell.2012.05.012. PubMed DOI
Sokol S.Y. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development. 2011;138:4341–4350. doi: 10.1242/dev.066209. PubMed DOI PMC
Cadigan K.M., Peifer M. Wnt signaling from development to disease: Insights from model systems. Cold Spring Harb. Perspect. Biol. 2009;1:a002881. doi: 10.1101/cshperspect.a002881. PubMed DOI PMC
Liu C., Li Y., Semenov M., Han C., Baeg G.H., Tan Y., Zhang Z., Lin X., He X. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–847. doi: 10.1016/S0092-8674(02)00685-2. PubMed DOI
Shen C., Wang D., Liu X., Gu B., Du Y., Wei F.Z., Cao L.L., Song B., Lu X., Yang Q., et al. SET7/9 regulates cancer cell proliferation by influencing β-catenin stability. FASEB J. 2015;29:4313–4323. doi: 10.1096/fj.15-273540. PubMed DOI
Lu L., Gao Y., Zhang Z., Cao Q., Zhang X., Zou J., Cao Y. Kdm2a/b Lysine Demethylases Regulate Canonical Wnt Signaling by Modulating the Stability of Nuclear β-Catenin. Dev. Cell. 2015;33:660–674. doi: 10.1016/j.devcel.2015.04.006. PubMed DOI
Gao C., Xiao G., Hu J. Regulation of Wnt/beta-catenin signaling by posttranslational modifications. Cell Biosci. 2014;4:13. doi: 10.1186/2045-3701-4-13. PubMed DOI PMC
Gay F., Calvo D., Lo M.C., Ceron J., Maduro M., Lin R., Shi Y. Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1. Genes Dev. 2003;17:717–722. doi: 10.1101/gad.1042403. PubMed DOI PMC
Hikasa H., Ezan J., Itoh K., Li X., Klymkowsky M.W., Sokol S.Y. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev. Cell. 2010;19:521–532. doi: 10.1016/j.devcel.2010.09.005. PubMed DOI PMC
Hikasa H., Sokol S.Y. Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2. J. Biol. Chem. 2011;286:12093–12100. doi: 10.1074/jbc.M110.185280. PubMed DOI PMC
Ishitani T., Ninomiya-Tsuji J., Nagai S., Nishita M., Meneghini M., Barker N., Waterman M., Bowerman B., Clevers H., Shibuya H., et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature. 1999;399:798–802. doi: 10.1038/21674. PubMed DOI
Vacik T., Ladinovic D., Raska I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9:431–441. doi: 10.1080/19491034.2018.1498707. PubMed DOI PMC
Tsukada Y., Fang J., Erdjument-Bromage H., Warren M.E., Borchers C.H., Tempst P., Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–816. doi: 10.1038/nature04433. PubMed DOI
Liu L., Liu J., Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review) Exp. Ther. Med. 2021;22:723. doi: 10.3892/etm.2021.10155. PubMed DOI PMC
Dhar S.S., Alam H., Li N., Wagner K.W., Chung J., Ahn Y.W., Lee M.G. Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells. J. Biol. Chem. 2014;289:7483–7496. doi: 10.1074/jbc.M113.521625. PubMed DOI PMC
Wagner K.W., Alam H., Dhar S.S., Giri U., Li N., Wei Y., Giri D., Cascone T., Kim J.H., Ye Y., et al. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. J. Clin. Investig. 2013;123:5231–5246. doi: 10.1172/JCI68642. PubMed DOI PMC
Kooistra S.M., Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 2012;13:297–311. doi: 10.1038/nrm3327. PubMed DOI
Blackledge N.P., Zhou J.C., Tolstorukov M.Y., Farcas A.M., Park P.J., Klose R.J. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell. 2010;38:179–190. doi: 10.1016/j.molcel.2010.04.009. PubMed DOI PMC
Lu T., Jackson M.W., Wang B., Yang M., Chance M.R., Miyagi M., Gudkov A.V., Stark G.R. Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. USA. 2010;107:46–51. doi: 10.1073/pnas.0912493107. PubMed DOI PMC
Borgel J., Tyl M., Schiller K., Pusztai Z., Dooley C.M., Deng W., Wooding C., White R.J., Warnecke T., Leonhardt H., et al. KDM2A integrates DNA and histone modification signals through a CXXC/PHD module and direct interaction with HP1. Nucleic Acids Res. 2017;45:1114–1129. doi: 10.1093/nar/gkw979. PubMed DOI PMC
Ladinovic D., Novotna J., Jaksova S., Raska I., Vacik T. A demethylation deficient isoform of the lysine demethylase KDM2A interacts with pericentromeric heterochromatin in an HP1a-dependent manner. Nucleus. 2017;8:563–572. doi: 10.1080/19491034.2017.1342915. PubMed DOI PMC
Frescas D., Guardavaccaro D., Kuchay S.M., Kato H., Poleshko A., Basrur V., Elenitoba-Johnson K.S., Katz R.A., Pagano M. KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle. 2008;7:3539–3547. doi: 10.4161/cc.7.22.7062. PubMed DOI PMC
Bueno M.T.D., Baldascini M., Richard S., Lowndes N.F. Recruitment of lysine demethylase 2A to DNA double strand breaks and its interaction with 53BP1 ensures genome stability. Oncotarget. 2018;9:15915–15930. doi: 10.18632/oncotarget.24636. PubMed DOI PMC
Liu X., Li J., Wang Z., Meng J., Wang A., Zhao X., Xu Q., Cai Z., Hu Z. KDM2A Targets PFKFB3 for Ubiquitylation to Inhibit the Proliferation and Angiogenesis of Multiple Myeloma Cells. Front. Oncol. 2021;11:653788. doi: 10.3389/fonc.2021.653788. PubMed DOI PMC
Gorelik M., Manczyk N., Pavlenco A., Kurinov I., Sidhu S.S., Sicheri F. A Structure-Based Strategy for Engineering Selective Ubiquitin Variant Inhibitors of Skp1-Cul1-F-Box Ubiquitin Ligases. Structure. 2018;26:1226–1236.e3. doi: 10.1016/j.str.2018.06.004. PubMed DOI PMC
Zhang H., Rong X., Wang C., Liu Y., Lu L., Li Y., Zhao C., Zhou J. VBP1 modulates Wnt/β-catenin signaling by mediating the stability of the transcription factors TCF/LEFs. J. Biol. Chem. 2020;295:16826–16839. doi: 10.1074/jbc.RA120.015282. PubMed DOI PMC
Yamada M., Ohnishi J., Ohkawara B., Iemura S., Satoh K., Hyodo-Miura J., Kawachi K., Natsume T., Shibuya H. NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF) J. Biol. Chem. 2006;281:20749–20760. doi: 10.1074/jbc.M602089200. PubMed DOI
Hou P., Ma X., Zhang Q., Wu C.J., Liao W., Li J., Wang H., Zhao J., Zhou X., Guan C., et al. USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes Dev. 2019;33:1361–1366. doi: 10.1101/gad.326314.119. PubMed DOI PMC
Han W., Lee H., Han J.K. Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling. Sci. Rep. 2017;7:42590. doi: 10.1038/srep42590. PubMed DOI PMC
Sun X., Cai M., Wu L., Zhen X., Chen Y., Peng J., Han S., Zhang P. Ubiquitin-specific protease 28 deubiquitinates TCF7L2 to govern the action of the Wnt signaling pathway in hepatic carcinoma. Cancer Sci. 2022;113:3463–3475. doi: 10.1111/cas.15509. PubMed DOI PMC
Liu H., Liu L., Holowatyj A., Jiang Y., Yang Z.Q. Integrated genomic and functional analyses of histone demethylases identify oncogenic KDM2A isoform in breast cancer. Mol. Carcinog. 2016;55:977–990. doi: 10.1002/mc.22341. PubMed DOI PMC
Huang Y., Liu Y., Yu L., Chen J., Hou J., Cui L., Ma D., Lu W. Histone demethylase KDM2A promotes tumor cell growth and migration in gastric cancer. Tumor Biol. 2015;36:271–278. doi: 10.1007/s13277-014-2630-5. PubMed DOI
Zhu Q., Shen Y., Chen X., He J., Liu J., Zu X. Self-Renewal Signalling Pathway Inhibitors: Perspectives on Therapeutic Approaches for Cancer Stem Cells. OncoTargets Ther. 2020;13:525–540. doi: 10.2147/OTT.S224465. PubMed DOI PMC
Fendler A., Bauer D., Busch J., Jung K., Wulf-Goldenberg A., Kunz S., Song K., Myszczyszyn A., Elezkurtaj S., Erguen B., et al. Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat. Commun. 2020;11:929. doi: 10.1038/s41467-020-14700-7. PubMed DOI PMC
Clara J.A., Monge C., Yang Y., Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat. Rev. Clin. Oncol. 2019;17:204–232. doi: 10.1038/s41571-019-0293-2. PubMed DOI
Ladinovic D., Pinkas D., Sopin T., Raska O., Liska F., Raska I., Vacik T. Alternative isoforms of KDM2A and KDM2B lysine demethylases negatively regulate canonical Wnt signaling. PLoS ONE. 2020;15:e0236612. doi: 10.1371/journal.pone.0236612. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Weise A., Bruser K., Elfert S., Wallmen B., Wittel Y., Wohrle S., Hecht A. Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets. Nucleic Acids Res. 2010;38:1964–1981. doi: 10.1093/nar/gkp1197. PubMed DOI PMC
Sato N., Meijer L., Skaltsounis L., Greengard P., Brivanlou A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 2004;10:55–63. doi: 10.1038/nm979. PubMed DOI
Cohen P., Goedert M. GSK3 inhibitors: Development and therapeutic potential. Nat. Rev. Drug Discov. 2004;3:479–487. doi: 10.1038/nrd1415. PubMed DOI
Li V.S., Ng S.S., Boersema P.J., Low T.Y., Karthaus W.R., Gerlach J.P., Mohammed S., Heck A.J., Maurice M.M., Mahmoudi T., et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–1256. doi: 10.1016/j.cell.2012.05.002. PubMed DOI
Sarikas A., Hartmann T., Pan Z.Q. The cullin protein family. Genome Biol. 2011;12:220. doi: 10.1186/gb-2011-12-4-220. PubMed DOI PMC
Pellegrino N.E., Guven A., Gray K., Shah P., Kasture G., Nastke M.D., Thakurta A., Gesta S., Vishnudas V.K., Narain N.R., et al. The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int. J. Mol. Sci. 2022;23:3480. doi: 10.3390/ijms23073480. PubMed DOI PMC
Wang J., Xiang Y., Fan M., Fang S., Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers. 2023;15:2385. doi: 10.3390/cancers15082385. PubMed DOI PMC
Graham T.A., Ferkey D.M., Mao F., Kimelman D., Xu W. Tcf4 can specifically recognize β-catenin using alternative conformations. Nat. Struct. Biol. 2001;8:1048–1052. doi: 10.1038/nsb718. PubMed DOI
Zuo Y., Zhan L., Wen H., Xue J., Tan Y., Sun W., Xu E. Stabilization of nuclear β-catenin by inhibiting KDM2A mediates cerebral ischemic tolerance. FASEB J. 2023;37:e22796. doi: 10.1096/fj.202201657. PubMed DOI
Hwang S.G., Yu S.S., Ryu J.H., Jeon H.B., Yoo Y.J., Eom S.H., Chun J.S. Regulation of beta-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of α-catenin. J. Biol. Chem. 2005;280:12758–12765. doi: 10.1074/jbc.M413367200. PubMed DOI
Schwechheimer C. NEDD8-its role in the regulation of Cullin-RING ligases. Curr. Opin. Plant Biol. 2018;45:112–119. doi: 10.1016/j.pbi.2018.05.017. PubMed DOI
Wang B., Wang T., Zhu H., Yan R., Li X., Zhang C., Tao W., Ke X., Hao P., Qu Y. Neddylation is essential for β-catenin degradation in Wnt signaling pathway. Cell Rep. 2022;38:110538. doi: 10.1016/j.celrep.2022.110538. PubMed DOI
Zhang L., Jing H., Li H., Chen W., Luo B., Zhang H., Dong Z., Li L., Su H., Xiong W.C., et al. Neddylation is critical to cortical development by regulating Wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA. 2020;117:26448–26459. doi: 10.1073/pnas.2005395117. PubMed DOI PMC
Yang Y., Li S., Li B., Li Y., Xia K., Aman S., Yang Y., Ahmad B., Zhao B., Wu H. FBXL10 promotes ERRα protein stability and proliferation of breast cancer cells by enhancing the mono-ubiquitylation of ERRα. Cancer Lett. 2021;502:108–119. doi: 10.1016/j.canlet.2021.01.007. PubMed DOI
Yuan T.Z., Lin H.Y., Kuei C.H., Lin C.H., Lee H.H., Lee H.L., Lu H.W., Su C.Y., Chiu H.W., Lin Y.F. NEDD8 promotes radioresistance via triggering autophagy formation and serves as a novel prognostic marker in oral squamous cell carcinoma. Cancer Cell Int. 2023;23:41. doi: 10.1186/s12935-023-02883-0. PubMed DOI PMC
Zhou L., Lin X., Zhu J., Zhang L., Chen S., Yang H., Jia L., Chen B. NEDD8-conjugating enzyme E2s: Critical targets for cancer therapy. Cell Death Discov. 2023;9:23. doi: 10.1038/s41420-023-01337-w. PubMed DOI PMC