Alternative intronic promoters in development and disease

. 2017 May ; 254 (3) : 1201-1206. [epub] 20170111

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28078440
Odkazy

PubMed 28078440
DOI 10.1007/s00709-016-1071-y
PII: 10.1007/s00709-016-1071-y
Knihovny.cz E-zdroje

Approximately 20,000 mammalian genes are estimated to encode between 250 thousand and 1 million different proteins. This enormous diversity of the mammalian proteome is caused by the ability of a single-gene locus to encode multiple protein isoforms. Protein isoforms encoded by one gene locus can be functionally distinct, and they can even have antagonistic functions. One of the mechanisms involved in creating this proteome complexity is alternative promoter usage. Alternative intronic promoters are located downstream from their canonical counterparts and drive the expression of alternative RNA isoforms that lack upstream exons. These upstream exons can encode some important functional domains, and proteins encoded by alternative mRNA isoforms can be thus functionally distinct from the full-length protein encoded by canonical mRNA isoforms. Since any misbalance of functionally distinct protein isoforms is likely to have detrimental consequences for the cell and the whole organism, their expression must be precisely regulated. Misregulation of alternative intronic promoters is frequently associated with various developmental defects and diseases including cancer, and it is becoming increasingly clear that this phenomenon deserves more attention.

Zobrazit více v PubMed

Genes Dev. 2011 Sep 1;25(17):1783-95 PubMed

Nature. 2014 Mar 27;507(7493):462-70 PubMed

J Clin Endocrinol Metab. 1996 Nov;81(11):3843-9 PubMed

Development. 2011 Oct;138(20):4341-50 PubMed

Genes Dev. 2009 Jul 1;23(13):1494-504 PubMed

Nat Genet. 1998 Aug;19(4):379-83 PubMed

J Clin Invest. 2016 May 2;126(5):1649-63 PubMed

PLoS One. 2016 Oct 6;11(10 ):e0164158 PubMed

Genome Res. 2002 Jun;12(6):996-1006 PubMed

Genome Res. 2012 Nov;22(11):2208-18 PubMed

EMBO Rep. 2016 Sep;17 (9):1304-13 PubMed

Oncogene. 2004 May 24;23(24):4211-9 PubMed

Cell Cycle. 2011 Dec 15;10(24):4199-200 PubMed

Cell. 2009 Dec 11;139(6):1056-68 PubMed

Semin Cell Dev Biol. 2015 Dec;47-48:101-9 PubMed

PLoS Genet. 2013;9(1):e1003234 PubMed

Epigenetics Chromatin. 2015 Dec 30;8:57 PubMed

Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 PubMed

BMC Dev Biol. 2007 Jul 12;7:84 PubMed

Cell. 2013 Nov 7;155(4):807-16 PubMed

Nucleic Acids Res. 2010 Oct;38(19):6375-88 PubMed

Nature. 2015 Dec 17;528(7582):418-21 PubMed

Trends Genet. 2015 Mar;31(3):128-39 PubMed

Cold Spring Harb Perspect Biol. 2012 Nov 01;4(11):null PubMed

Bioinformatics. 2007 Jan 1;23(1):122-4 PubMed

Cell. 2007 Feb 23;128(4):693-705 PubMed

PLoS Biol. 2005 Jan;3(1):e7 PubMed

Funct Integr Genomics. 2017 May;17 (2-3):135-143 PubMed

Genes Dev. 2011 May 15;25(10):1010-22 PubMed

Nat Rev Cancer. 2008 May;8(5):387-98 PubMed

Bioinformatics. 2000 Nov;16(11):1046-7 PubMed

Philos Trans R Soc Lond B Biol Sci. 2013 May 06;368(1620):20120357 PubMed

Trends Genet. 2008 Apr;24(4):167-77 PubMed

Gene. 2004 Nov 10;342(1):97-105 PubMed

J Biol Chem. 2007 Aug 17;282(33):24343-51 PubMed

Cell. 2015 Aug 27;162(5):948-59 PubMed

Nat Genet. 2001 May;28(1):53-7 PubMed

Hum Mol Genet. 2002 Jun 1;11(12):1449-53 PubMed

Nucleic Acids Res. 2016 Jan 4;44(D1):D869-76 PubMed

Clin Res Hepatol Gastroenterol. 2015 Sep;39(4):408-11 PubMed

PLoS Genet. 2013;9(8):e1003529 PubMed

Dev Dyn. 2010 Jan;239(1):69-76 PubMed

Nature. 2009 Sep 10;461(7261):199-205 PubMed

Nature. 2015 Feb 19;518(7539):337-43 PubMed

Genomics. 2009 Jun;93(6):509-13 PubMed

Cell. 2015 Oct 22;163(3):583-93 PubMed

Dev Biol. 2000 Feb 15;218(2):275-83 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...