Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33753904
DOI
10.1038/s41477-021-00873-6
PII: 10.1038/s41477-021-00873-6
Knihovny.cz E-zdroje
- MeSH
- ABC transportér, podrodina G genetika metabolismus MeSH
- biologický transport MeSH
- cytokininy metabolismus MeSH
- fixace dusíku MeSH
- Medicago truncatula genetika mikrobiologie MeSH
- regulátory růstu rostlin metabolismus MeSH
- Rhizobium fyziologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- symbióza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportér, podrodina G MeSH
- cytokininy MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.
Department of Biochemistry and Biotechnology Poznań University of Life Sciences Poznań Poland
Department of Biology University of Fribourg Fribourg Switzerland
Zobrazit více v PubMed
Jardinaud, M. F. et al. A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiol. 171, 2256–2276 (2016). PubMed DOI PMC
Gamas, P., Brault, M., Jardinaud, M. F. & Frugier, F. Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci. 22, 792–802 (2017). PubMed DOI
Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015). PubMed DOI PMC
Wybouw, B. & De Rybel, B. Cytokinin – a developing story. Trends Plant Sci. 24, 177–185 (2019). PubMed DOI
Fisher, R. F., Egelhoff, T. T., Mulligan, J. T. & Long, S. R. Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev. 2, 282–293 (1988). PubMed DOI
Oldroyd, G. E. Plant science. Nodules and hormones. Science 315, 52–53 (2007). PubMed DOI
Frugier, F., Kosuta, S., Murray, J. D., Crespi, M. & Szczyglowski, K. Cytokinin: secret agent of symbiosis. Trends Plant Sci. 13, 115–120 (2008). PubMed DOI
Roux, B. et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 77, 817–837 (2014). PubMed DOI
Nelson, B. K., Cai, X. & Nebenfuhr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007). PubMed DOI
Hwang, J. U. et al. Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol. Plant 9, 338–355 (2016). PubMed DOI
Ko, D. et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl Acad. Sci. USA 111, 7150–7155 (2014). PubMed DOI PMC
Zhang, K. et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 5, 3274 (2014). PubMed DOI
Osugi, A. et al. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants 3, 17112 (2017). PubMed DOI
Gonzalez-Rizzo, S., Crespi, M. & Frugier, F. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18, 2680–2693 (2006). PubMed DOI PMC
Plet, J. et al. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65, 622–633 (2011). PubMed DOI
Bucher, M. et al. The expression of an extensin-like protein correlates with cellular tip growth in tomato. Plant Physiol. 128, 911–923 (2002). PubMed DOI PMC
Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969 (2004). PubMed DOI PMC
Rival, P. et al. Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development 139, 3383–3391 (2012). PubMed DOI
Park, J., Lee, Y., Martinoia, E. & Geisler, M. Plant hormone transporters: what we know and what we would like to know. BMC Biol. 15, 93 (2017). PubMed DOI PMC
van Zeijl, A. et al. Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol. Plant 8, 1213–1226 (2015). PubMed DOI
Riefler, M., Novak, O., Strnad, M. & Schmulling, T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18, 40–54 (2006). PubMed DOI PMC
Hwang, I., Sheen, J. & Muller, B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 63, 353–380 (2012). PubMed DOI
Zurcher, E., Liu, J., di Donato, M., Geisler, M. & Muller, B. Plant development regulated by cytokinin sinks. Science 353, 1027–1030 (2016). PubMed DOI
Herrbach, V. et al. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula. J. Exp. Bot. 68, 568–582 (2017).
Breakspear, A. et al. The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26, 4680–4701 (2014). PubMed DOI PMC
Czaja, L. F. et al. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol. 159, 1671–1685 (2012). PubMed DOI PMC
Miri, M., Janakirama, P., Held, M., Ross, L. & Szczyglowski, K. Into the root: how cytokinin controls rhizobial infection. Trends Plant Sci. 21, 178–186 (2016). PubMed DOI
Held, M. et al. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. Plant Cell 26, 678–694 (2014). PubMed DOI PMC
Vernie, T. et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. Plant Cell 27, 3410–3424 (2015). PubMed DOI PMC
Mortier, V. et al. Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula. N. Phytol. 202, 582–593 (2014). DOI
Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E. & Ausubel, F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bacteriol. 149, 114–122 (1982). PubMed DOI PMC
Cheng, H. P. & Walker, G. C. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180, 5183–5191 (1998). PubMed DOI PMC
Barnett, M. J., Toman, C. J., Fisher, R. F. & Long, S. R. A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc. Natl Acad. Sci. USA 101, 16636–16641 (2004). PubMed DOI PMC
Penmetsa, R. V. & Cook, D. R. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527–530 (1997). PubMed DOI
Roche, P. et al. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67, 1131–1143 (1991). PubMed DOI
Rolfe, B. G., Gresshoff, P. M. & Shine, J. Rapid screening for symbiotic mutants of rhizobium and white clover. Plant Sci. Lett. 19, 277–284 (1980). DOI
Garcia, J., Barker, D. G. & Journet, E.-P. in The Medicago truncatula Handbook (eds Mathesius, U. et al.) (The Samuel Roberts Noble Foundation USA, 2006).
Tadege, M. et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 54, 335–347 (2008). PubMed DOI
Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002). PubMed DOI
De Rybel, B. et al. A versatile set of ligation-independent cloning vectors for functional studies in plants. Plant Physiol. 156, 1292–1299 (2011). PubMed DOI PMC
Wendrich, J. R., Liao, C. Y., van den Berg, W. A., De Rybel, B. & Weijers, D. Ligation-independent cloning for plant research. Methods Mol. Biol. 1284, 421–431 (2015). PubMed DOI
Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469 (2003). PubMed DOI PMC
Limpens, E. et al. Formation of organelle-like N-2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc. Natl Acad. Sci. USA 102, 10375–10380 (2005). PubMed DOI PMC
Quandt, H. J., Puhler, A. & Broer, I. Transgenic root-nodules of vicia-hirsuta – a fast and efficient system for the study of gene-expression in indeterminate-type nodules. Mol. Plant Microbe 6, 699–706 (1993). DOI
Boisson-Dernier, A. et al. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant Microbe. Interact. 14, 695–700 (2001). PubMed DOI
Haney, C. H. & Long, S. R. Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc. Natl Acad. Sci. USA 107, 478–483 (2010). PubMed DOI
Chabaud, M. et al. in The Medicago truncatula Handbook (eds Mathesius, U. et al.) (The Samuel Roberts Noble Foundation USA, 2006).
Soulemanov, A., Prithiviraj, B., Carlson, R. W., Jeyaretnam, B. & Smith, D. L. Isolation and characterization of the major nod factor of Bradyrhizobium japonicum strain 532 C. Microbiol. Res. 157, 25–28 (2002). PubMed DOI
Barker, D. G. et al. in The Medicago truncatula Handbook (eds Mathesius, U. et al.) (The Samuel Roberts Noble Foundation USA, 2006).
Damiani, I. et al. Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks. Front Plant Sci. 7, 794 (2016). PubMed PMC
Warner, C. A. et al. An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 166, 1684–1687 (2014). PubMed DOI PMC
Wu, F. H. et al. Tape–Arabidopsis Sandwich – a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16 (2009). PubMed DOI PMC
Stomp, A.-M. in Gus Protocols (ed Gallagher, S. R.) 103–113 (Academic Press, 1992).
Henrichs, S. et al. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 31, 2965–2980 (2012). PubMed DOI PMC
Svačinová, J. et al. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8, 17 (2012). PubMed DOI PMC
Laloum, T. et al. Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume–rhizobia endosymbiosis. Plant J. 79, 757–768 (2014). PubMed DOI
Cerri, M. R. et al. Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiol. 160, 2155–2172 (2012). PubMed DOI PMC