High-Resolution Maps of Mouse Reference Populations
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 CA034196
NCI NIH HHS - United States
P50 GM076468
NIGMS NIH HHS - United States
U01 AA016662
NIAAA NIH HHS - United States
U19 AI100625
NIAID NIH HHS - United States
MOP-93583
CIHR - Canada
PubMed
28839117
PubMed Central
PMC5633391
DOI
10.1534/g3.117.300188
PII: g3.117.300188
Knihovny.cz E-zdroje
- Klíčová slova
- chromosome substitution strains, gene conversions, mouse diversity genotyping array, recombinant inbred strains,
- MeSH
- genotyp MeSH
- inbrední kmeny myší genetika MeSH
- mapování chromozomů MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#
Institut de Recherches Cliniques Montreal Quebec H2W 1R7 Canada
National Institute of Genetics Mishima 411 8540 Japan
Zobrazit více v PubMed
Beck J. A., Lloyd S., Hafezparast M., Lennon-Pierce M., Eppig J. T., et al. , 2000. Genealogies of mouse inbred strains. Nat. Genet. 24: 23–25. PubMed
Belknap J., 1998. Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav. Genet. 28: 29–38. PubMed
Broman K. W., 2005. The genomes of recombinant inbred lines. Genetics 169: 1133–1146. PubMed PMC
Broman K. W., Sen S., 2009. A Guide to QTL Mapping with R/qtl. Springer, New York.
Buchner D. A., Nadeau J. H., 2015. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res. 25: 775–791. PubMed PMC
Chesler E. J., Gatti D. M., Morgan A. P., Strobel M., Trepanier L., et al. , 2016. Diversity outbred mice at 21: maintaining allelic variation in the face of selection. G3 6: 3893–3902. PubMed PMC
Chinwalla A. T., Cook L. L., Delehaunty K. D., Fewell G. A., Fulton L. A., et al. , 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562. PubMed
Churchill G. A., Gatti D. M., Munger S. C., Svenson K. L., 2012. The diversity outbred mouse population. Mamm. Genome 23: 713–718. PubMed PMC
Collaborative Cross Consortium , 2012. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190: 389–401. PubMed PMC
Didion J. P., Yang H., Sheppard K., Fu C. P., McMillan L., et al. , 2012. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics 13: 34. PubMed PMC
Gregorova S., Divina P., Storchova R., Trachtulec Z., Fotopulosova V., et al. , 2008. Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res. 18: 509–515. PubMed PMC
Himmelmann, L., 2010 HMM: HMM - Hidden Markov Models. R package version 1.0. Available at: https://CRAN.R-project.org/package=HMM. Accessed: April 8, 2016.
Juang B.-H., Rabiner L. R., 1990. The segmental K-means algorithm for estimating parameters of hidden Markov models. IEEE Trans. Acoust. Speech Signal Process. 38: 1639–1641.
Keane T. M., Goodstadt L., Danecek P., White M. A., Wong K., et al. , 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289–294. PubMed PMC
Kumar V., Kim K., Joseph C., Kourrich S., Yoo S.-H., et al. , 2013. C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science 342: 1508–1512. PubMed PMC
Liu J., Song H., Liu D., Zuo T., Lu F., et al. , 2014. Extensive recombination due to heteroduplexes generates large amounts of artificial gene fragments during PCR. PLoS One 9: e106658. PubMed PMC
Morgan A. P., Didion J. P., Doran A. G., Holt J. M., McMillan L., et al. , 2016. Whole genome sequence of two wild-derived Mus musculus domesticus inbred strains, LEWES/EiJ and ZALENDE/EiJ, with different diploid numbers. G3 (Bethesda) 6: 4211–4216. PubMed PMC
Nadeau J. H., Singer J. B., Matin A., Lander E. S., 2000. Analysing complex genetic traits with chromosome substitution strains. Nat. Genet. 24: 221–225. PubMed
Nadeau J. H., Forejt J., Takada T., Shiroishi T., 2012. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm. Genome 23: 693–705. PubMed PMC
Nesbitt M. N., Skamene E., 1984. Recombinant inbred mouse strains derived from A/J and C57BL/6J: a tool for the study of genetic mechanisms in host resistance to infection and malignancy. J. Leukoc. Biol. 36: 357–364. PubMed
Peirce J. L., Lu L., Gu J., Silver L. M., Williams R. W., 2004. A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet. 5: 7. PubMed PMC
Shifman S., Bell J. T., Copley R. R., Taylor M. S., Williams R. W., et al. , 2006. A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol. 4: e395. PubMed PMC
Shorter J. R., Odet F., Aylor D. L., Pan W., Kao C.-Y., et al. , 2017. Male infertility is responsible for nearly half of the extinction observed in the mouse Collaborative Cross. Genetics 206: 557–572. PubMed PMC
Simecek P., Churchill G. A., Yang H., Rowe L. B., Herberg L., et al. , 2015. Genetic analysis of substrain divergence in non-obese diabetic (NOD) mice. G3 (Bethesda) 5: 771–775. PubMed PMC
Srivastava A., Morgan A. P., Najarian M. L., Sarsani V. K., Sigmon J. S., et al. , 2017. Genomes of the mouse Collaborative Cross. Genetics 206: 537–556. PubMed PMC
Taft R. A., Davisson M., Wiles M. V., 2006. Know thy mouse. Trends Genet. 22: 649–653. PubMed
Takada T., Mita A., Maeno A., Sakai T., Shitara H., et al. , 2008. Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res. 18: 500–508. PubMed PMC
Taudt A., Colomé-Tatché M., Johannes F., 2016. Genetic sources of population epigenomic variation. Nat. Rev. Genet. 17: 319–332. PubMed
Taylor B. A., Bailey D. W., Cherry M., Riblet R., Weigert M., 1975. Genes for immunoglobulin heavy chain and serum prealbumin protein are linked in mouse. Nature 256: 644–646. PubMed
Taylor B. A., Wnek C., Kotlus B. S., Roemer N., MacTaggart T., et al. , 1999. Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm. Genome 10: 335–348. PubMed
Welsh C. E., McMillan L., 2012. Accelerating the inbreeding of multi-parental recombinant inbred lines generated by sibling matings. G3 (Bethesda) 2: 191–198. PubMed PMC
Williams R. W., Gu J., Qi S., Lu L., 2001. The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol. 2: RESEARCH0046. PubMed PMC
Williams R. W., Bennett B., Lu L., Gu J., DeFries J. C., et al. , 2004. Genetic structure of the LXS panel of recombinant inbred mouse strains: a powerful resource for complex trait analysis. Mamm. Genome 15: 637–647. PubMed
Yang H., Ding Y., Hutchins L. N., Szatkiewicz J., Bell T. A., et al. , 2009. A customized and versatile high-density genotyping array for the mouse. Nat. Methods 6: 663–666. PubMed PMC
Yang H., Wang J. R., Didion J. P., Buus R. J., Bell T. A., et al. , 2011. Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet. 43: 648–655. PubMed PMC