An informatics guided classification of miscible and immiscible binary alloy systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28851941
PubMed Central
PMC5575349
DOI
10.1038/s41598-017-09704-1
PII: 10.1038/s41598-017-09704-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The classification of miscible and immiscible systems of binary alloys plays a critical role in the design of multicomponent alloys. By mining data from hundreds of experimental phase diagrams, and thousands of thermodynamic data sets from experiments and high-throughput first-principles (HTFP) calculations, we have obtained a comprehensive classification of alloying behavior for 813 binary alloy systems consisting of transition and lanthanide metals. Among several physics-based descriptors, the slightly modified Pettifor chemical scale provides a unique two-dimensional map that divides the miscible and immiscible systems into distinctly clustered regions. Based on an artificial neural network algorithm and elemental similarity, the miscibility of the unknown systems is further predicted and a complete miscibility map is thus obtained. Impressively, the classification by the miscibility map yields a robust validation on the capability of the well-known Miedema's theory (95% agreement) and shows good agreement with the HTFP method (90% agreement). Our results demonstrate that a state-of-the-art physics-guided data mining can provide an efficient pathway for knowledge discovery in the next generation of materials design.
Plant Sciences Institute Iowa State University 2031 Roy J Carver Co Lab Ames IA 50011 USA
Theoretical Division Los Alamos National Laboratory Los Alamos NM 87545 USA
Zobrazit více v PubMed
Kalil, T., Wadia, C. Materials Genome Initiative for Global Competitiveness (2011), https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf (Date of access: 26/04/2017)
Curtarolo S, et al. The high-throughput highway to computational materials design. Nat. Mater. 2013;12:191–201. doi: 10.1038/nmat3568. PubMed DOI
Jain A, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1 doi: 10.1063/1.4812323. DOI
Rajan, K. Data mining and inorganic crystallography. in Data Mining In Crystallography (ed. Hofmann, D. W. M.) 89–134 (Springer, (2009).
Miedema, A. R., Niessen, A. K., De Boer, F. R., Boom, R. & Matten, W. C. M. Cohesion in metals: transition metal alloys. (North-Holland Publishing, (1989).
Liu BX, Lai WS, Zhang Q. Irradiation induced amorphization in metallic multilayers and calculation of glass-forming ability from atomistic potential in the binary metal systems. Mater. Sci. Eng. R-Rep. 2000;29:1–48. doi: 10.1016/S0927-796X(00)00016-4. DOI
Effenberg, G. (ed.), Ilyenko, S. (ed.) Landolt-Boernstein: Group IV Physical Chemistry (Springer Berlin Heidelberg, 2008)
Villars, P. (editor-in-chief), Okamoto, H. & Cenzual, K. (section editors). ASM Alloy Phase Diagrams Database (2016), http://mio.asminternational.org/apd/ (Date of access: 26/04/2016).
Okamoto, H. Phase diagrams for binary alloys. (ASM International, 2010).
Zhang RF, Wang J, Beyerlein IJ, Misra A, Germann TC. Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces. Acta Mater. 2012;60:2855–2865. doi: 10.1016/j.actamat.2012.01.050. DOI
Zhang RF, Germann TC, Liu XY, Wang J, Beyerlein IJ. Layer size effect on the shock compression behavior of fcc-bcc nanolaminates. Acta Mater. 2014;79:74–83. doi: 10.1016/j.actamat.2014.07.016. DOI
Miedema, A. R. & De Chatel, P. F. Proceedings of the Symposium on Theory of Alloy Phase Formation. In Theory of alloy phase formation (ed. Lawrence Herman Bennett) (New Orleans, 1979).
Miedema AR, De Chatel PF, De Boer FR. Cohesion in alloys-fundamentals of a semi-empirical model. Physica B+C. 1980;100:1–28. doi: 10.1016/0378-4363(80)90054-6. DOI
Bakker, H. Enthalpies in alloys: Miedema’s semi-empirical model. Trans. Tech. Publications, 1–78 (1998).
Brandl C, Germann TC, Misra A. Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 2013;61:3600–3611. doi: 10.1016/j.actamat.2013.02.047. DOI
Pauling, L. The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Vol. 18 (Cornell university press, 1960).
Hume-Rothery W, Mabbott GW, Evans KMC. The freezing points, melting points, and solid solubility limits of the alloys of silver, and copper with the elements of the B sub-groups. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 1934;233:1–97. doi: 10.1098/rsta.1934.0014. DOI
Waber JT, Gschneidner K, Jr, Larson AC, Prince MY. Prediction of solid solubility in metallic alloys. Trans. Metall. Soc. AIME. 1963;227:717–723.
Darken, L. S. & Gurry, F. W. In Theory of alloy phase formation (ed. Lawrence Herman Bennett) (New Orleans, 1979).
Zhang RF, Zhang SH, He ZJ, Jing J, Sheng SH. Miedema Calculator: A thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema’s Theory. Comput. Phys. Commun. 2016;209:58–69. doi: 10.1016/j.cpc.2016.08.013. DOI
Zhang RF, Liu BX. Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Appl. Phys. Lett. 2002;81:1219–1221. doi: 10.1063/1.1499510. DOI
Zhang RF, Sheng SH, Liu BX. Predicting the formation enthalpies of binary intermetallic compounds. Chem. Phys. Lett. 2007;442:511–514. doi: 10.1016/j.cplett.2007.06.031. DOI
Zhang RF, Rajan K. Statistically based assessment of formation enthalpy for intermetallic compounds. Chem. Phys. Lett. 2014;612:177–181. doi: 10.1016/j.cplett.2014.08.024. DOI
Guo QT, Kleppa OJ. The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and co-workers at the University of Chicago–A review. J. Alloy. Compd. 2001;321:169–182. doi: 10.1016/S0925-8388(01)00956-2. DOI
Meschel SV, Chen XQ, Kleppa OJ, Nash P. The standard enthalpies of formation of some intermetallic compounds of early 4d and 5d transition metals by high temperature direct synthesis calorimetry. CALPHAD. 2009;33:55–62. doi: 10.1016/j.calphad.2008.07.013. DOI
Meschel SV, Kleppa OJ. Thermochemistry of some binary alloys of noble metals (Cu, Ag, Au) and transition metals by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2003;350:205–212. doi: 10.1016/S0925-8388(02)00983-0. DOI
Meschel SV, Kleppa OJ. Thermochemistry of some binary alloys of silver with the lanthanide metals by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2004;376:73–78. doi: 10.1016/j.jallcom.2003.11.160. DOI
Meschel SV, Kleppa OJ. Thermochemistry of some binary alloys of gold with the lanthanide metals by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2004;363:242–247. doi: 10.1016/S0925-8388(03)00527-9. DOI
Meschel SV, Kleppa OJ. Thermochemistry of some binary alloys of copper with the lanthanide metals by high-temperature direct synthesis calorimetry. J. Alloy. Compd. 2005;388:91–97. doi: 10.1016/j.jallcom.2004.08.062. DOI
Meschel SV, Kleppa OJ. Thermochemistry of some binary alloys of Samarium with the noble metals (Cu, Ag, Au) by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2006;416:93–97. doi: 10.1016/j.jallcom.2005.07.069. DOI
Meschel SV, Kleppa OJ. The standard enthalpies of formation of some intermetallic compounds of transition metals by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2006;415:143–149. doi: 10.1016/j.jallcom.2005.08.006. DOI
Meschel SV, Nash P, Chen XQ. The standard enthalpies of formation of binary intermetallic compounds of some late 4d and 5d transition metals by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2010;492:105–115. doi: 10.1016/j.jallcom.2009.11.092. DOI
Meschel SV, Nash P, Gao QN, Wang JC, Du Y. The standard enthalpies of formation of some binary intermetallic compounds of lanthanide–iron systems by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2013;554:232–239. doi: 10.1016/j.jallcom.2012.11.035. DOI
Meschel SV, Nash P, Gao QN, Wang JC, Du Y. Standard enthalpies of formation of some Lanthanide–Cobalt binary alloys by high temperature direct synthesis calorimetry. J. Alloy. Compd. 2013;578:465–470. doi: 10.1016/j.jallcom.2013.05.162. DOI
Wang JW, Guo QT, Kleppa OJ. Standard enthalpies of formation of some Th alloys with Group VIII elements (Co, Ni, Ru, Rh, Pd, Ir and Pt), determined by high-temperature direct synthesis calorimetry. J. Alloy. Compd. 2000;313:77–84. doi: 10.1016/S0925-8388(00)01157-9. DOI
Curtarolo S, Morgan D, Ceder G. Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys. CALPHAD. 2005;29:163–211. doi: 10.1016/j.calphad.2005.01.002. DOI
Curtarolo S, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 2012;58:218–226. doi: 10.1016/j.commatsci.2012.02.005. DOI
Curtarolo S, et al. AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 2012;58:227–235. doi: 10.1016/j.commatsci.2012.02.002. DOI
Pilania G, Wang CC, Jiang X, Rajasekaran S, Ramprasad R. Accelerating materials property predictions using machine learning. Sci Rep. 2013;3 doi: 10.1038/srep02810. PubMed DOI PMC
Curtarolo, S. et al. The aflow ab-initio binary alloy library (2016), http://materials.duke.edu/apool.html (Date of access: 11/03/2016).
Allred AL. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961;17:215–221. doi: 10.1016/0022-1902(61)80142-5. DOI
Huheey, J. E., Keiter, E. A. & Keiter, R. L. Inorganic chemistry: principles of structure and reactivity. (Harper Collins College Publisbers, 1993).
Teatum, E., Gschneidner, K. A. & Waber, J. Compilation of calculated data useful in predicting metallurgical behavior of the elements in binary alloy systems. Vol. 2345 (Los Alamos Scientific Laboratory of the University of California, 1960).
Cahn, R. W. & Haasen, P. Physical metallurgy. (North-Holland Publishing, 1996).
Teatum, E., Gschneidner, K. & Waber, J. Compilation of Calculated Data Useful in Predicting Metallurgical Behavior of the Elements in Binary Alloy Systems. (Los Alamos Scientific Lab., United States, 1968).
Маrtynоv АI, Batsanov SS. New approach to calculating atomic electronegativities. Russ. J. Inorg. Chem. 1980;25:1737–1740.
Zunger, A. Pseudopotential Viewpoint of the Electronic and Structural Properties of Crystals. In Structure and Bonding in Crystals (ed. Michael O’Keeffe & Alexandra Navrotsky) 73 (Academic Press, 1981).
Pettifor DG. The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C: Solid State Phys. 1986;19 doi: 10.1088/0022-3719/19/3/002. DOI
Chelikowsky JR, Phillips JC. Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds. Phys. Rev. B. 1978;17 doi: 10.1103/PhysRevB.17.2453. DOI
Moody J, Darken CJ. Fast learning in networks of locally-tuned processing units. Neural Comput. 1989;1:281–294. doi: 10.1162/neco.1989.1.2.281. DOI
Haykin, S. Neural networks and learning machines. (Prentice Hall, 2008).