Identification and Characterization of Phospholipids with Very Long Chain Fatty Acids in Brewer's Yeast
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P503 17-00027S
Grantová Agentura České Republiky
PubMed
28905226
DOI
10.1007/s11745-017-4294-6
PII: 10.1007/s11745-017-4294-6
Knihovny.cz E-zdroje
- Klíčová slova
- Negative electrospray ionization, Phospholipids, Very long chain fatty acids, Yeast,
- MeSH
- fosfolipidy analýza chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kyseliny mastné mononenasycené MeSH
- mastné kyseliny chemie MeSH
- molekulární struktura MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- Saccharomyces metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfolipidy MeSH
- kyseliny mastné mononenasycené MeSH
- mastné kyseliny MeSH
Yeast lipids and fatty acids (FA) were analyzed in Saccharomyces pastorianus from seven breweries and in the dietary yeast supplement Pangamin. GC-MS identified more than 30 FA, half of which were very-long chain fatty acids (VLCFA) with hydrocarbon chain lengths of ≥22 C atoms. Positional isomers ω-9 and ω-7 were identified in FA with C18-C28 even-numbered alkyl chains. The most abundant ω-7 isomer was cis-vaccenic acid. The structure of monounsaturated FA was proved by dimethyl disulfide adducts (position of double bonds and cis geometric configuration) and by GC-MS of pyridyl carbinol esters. Ultra-high performance liquid chromatography-tandem mass spectrometry with negative electrospray ionization identified the phospholipids phosphatidylethanolamine, phosphatidylinositol and phosphatidylcholine, with more than 150 molecular species. Wild-type unmutated brewer's yeast strains conventionally used for the manufacture of food supplements were found to contain VLCFA.
Zobrazit více v PubMed
Mol Biosyst. 2014 Jun;10(6):1364-76 PubMed
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41 PubMed
Biochem J. 2004 Aug 1;381(Pt 3):941-9 PubMed
Nat Commun. 2017 May 26;8:15587 PubMed
J Biol Chem. 1996 Aug 2;271(31):18413-22 PubMed
Biochim Biophys Acta. 1974 Jan 23;337(1):22-8 PubMed
Eur J Biochem. 1998 Mar 15;252(3):477-85 PubMed
Biochim Biophys Acta. 2016 Nov;1861(11):1634-1642 PubMed
Mol Genet Genomics. 2003 May;269(2):290-8 PubMed
Ann Nutr Metab. 2000;44(5-6):229-34 PubMed
Metabolites. 2012 Mar 02;2(1):254-67 PubMed
Mol Biol Cell. 2014 Oct 15;25(20):3234-46 PubMed
Folia Microbiol (Praha). 2005;50(1):24-30 PubMed
PLoS One. 2013 Sep 04;8(9):e73936 PubMed
Folia Microbiol (Praha). 2015 Sep;60(5):457-64 PubMed
Chem Biol. 2015 Mar 19;22(3):412-25 PubMed
Biotechnol Bioeng. 2017 May;114(5):1025-1035 PubMed
J Bacteriol. 1973 Jul;115(1):464-6 PubMed
Bioresour Technol. 2013 Sep;144:360-9 PubMed
Biochim Biophys Acta. 2001 Jun 29;1532(3):223-33 PubMed
J Lipid Res. 1983 May;24(5):620-7 PubMed
Can J Biochem Physiol. 1959 Aug;37(8):911-7 PubMed
Gene. 2007 Apr 15;391(1-2):16-25 PubMed
Chem Phys Lipids. 1975 Feb;14(1):15-32 PubMed
Lipids. 2015 Jul;50(7):621-30 PubMed
Lipids. 2005 Apr;40(4):419-28 PubMed
PLoS One. 2012;7(4):e35063 PubMed
Bioresour Technol. 2013 May;135:357-64 PubMed