doGlycans-Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28906114
PubMed Central
PMC5662928
DOI
10.1021/acs.jcim.7b00237
Knihovny.cz E-zdroje
- MeSH
- biochemie sacharidů metody MeSH
- glykolipidy chemie MeSH
- glykoproteiny chemie MeSH
- polysacharidy chemie MeSH
- sacharidy chemie MeSH
- simulace molekulární dynamiky * MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykolipidy MeSH
- glykoproteiny MeSH
- polysacharidy MeSH
- sacharidy MeSH
Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell-cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would be the method of choice to explore how carbohydrates function. However, the progress in the field is limited by the lack of appropriate tools for preparing carbohydrate structures and related topology files for the simulation models. Here we present tools that fill this gap. Applications where the tools discussed in this paper are particularly useful include, among others, the preparation of structures for glycolipids, nanocellulose, and glycans linked to glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS.
Department of Physics University of Helsinki P O Box 64 FI 00014 Helsinki Finland
Laboratory of Physics Tampere University of Technology P O Box 692 FI 33101 Tampere Finland
MEMPHYS Center for Biomembrane Physics University of Southern Denmark 5230 Odense Denmark
Zobrazit více v PubMed
Best R. B.; Zhu X.; Shim J.; Lopes P. E. M.; Mittal J.; Feig M.; MacKerell A. D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone phi, psi and Side-Chain chi(1) and chi(2) Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. 10.1021/ct300400x. PubMed DOI PMC
Harder E.; Damm W.; Maple J.; Wu C. J.; Reboul M.; Xiang J. Y.; Wang L. L.; Lupyan D.; Dahlgren M. K.; Knight J. L.; Kaus J. W.; Cerutti D. S.; Krilov G.; Jorgensen W. L.; Abel R.; Friesner R. A. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. 10.1021/acs.jctc.5b00864. PubMed DOI
Botan A.; Favela-Rosales F.; Fuchs P. F. J.; Javanainen M.; Kanduc M.; Kulig W.; Lamberg A.; Loison C.; Lyubartsev A.; Miettinen M. S.; Monticelli L.; Maatta J.; Ollila O. H. S.; Retegan M.; Rog T.; Santuz H.; Tynkkynen J. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. J. Phys. Chem. B 2015, 119, 15075–15088. 10.1021/acs.jpcb.5b04878. PubMed DOI PMC
Lyubartsev A. P.; Rabinovich A. L. Force Field Development for Lipid Membrane Simulations. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2483–2497. 10.1016/j.bbamem.2015.12.033. PubMed DOI
Hart K.; Foloppe N.; Baker C. M.; Denning E. J.; Nilsson L.; MacKerell A. D. Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium. J. Chem. Theory Comput. 2012, 8, 348–362. 10.1021/ct200723y. PubMed DOI PMC
Denning E. J.; Priyakumar U. D.; Nilsson L.; Mackerell A. D. Impact of 2 ′-Hydroxyl Sampling on the Conformational Properties of RNA: Update of the CHARMM All-Atom Additive Force Field for RNA. J. Comput. Chem. 2011, 32, 1929–1943. 10.1002/jcc.21777. PubMed DOI PMC
Soares T. A.; Hunenberger P. H.; Kastenholz M. A.; Krautler V.; Lenz T.; Lins R. D.; Oostenbrink C.; Van Gunsteren W. F. An Improved Nucleic Acid Parameter Set for the GROMOS Force Field. J. Comput. Chem. 2005, 26, 725–737. 10.1002/jcc.20193. PubMed DOI
Zgarbova M.; Otyepka M.; Sponer J.; Mladek A.; Banas P.; Cheatham T. E.; Jurecka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902. 10.1021/ct200162x. PubMed DOI PMC
Ivani I.; Dans P. D.; Noy A.; Perez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goni R.; Balaceanu A.; Portella G.; Battistini F.; Gelpi J. L.; Gonzalez C.; Vendruscolo M.; Laughton C. A.; Harris S. A.; Case D. A.; Orozco M. Parmbsc1: a Refined Force Field for DNA Simulations. Nat. Methods 2015, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC
Kony D.; Damm W.; Stoll S.; van Gunsteren W. F. An Improved OPLS-AA Force Field for Carbohydrates. J. Comput. Chem. 2002, 23, 1416–1429. 10.1002/jcc.10139. PubMed DOI
Pol-Fachin L.; Rusu V. H.; Verli H.; Lins R. D. GROMOS 53A6GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates. J. Chem. Theory Comput. 2012, 8, 4681–4690. 10.1021/ct300479h. PubMed DOI
Plazinski W.; Lonardi A.; Hünenberger P. H. Revision of the GROMOS 56A6CARBO Force Field: Improving the Description of Ring-Conformational Equilibria in Hexopyranose-Based Carbohydrates Chains. J. Comput. Chem. 2016, 37, 354–365. 10.1002/jcc.24229. PubMed DOI
Kirschner K. N.; Yongye A. B.; Tschampel S. M.; Gonzalez-Outeirino J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC
Woods Group. GLYCAM Web. Complex Carbohydrate Research Center. http://glycam.org/ (accessed 01.07.16).
Jo S.; Song K. C.; Desaire H.; MacKerell A. D.; Im W. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins. J. Comput. Chem. 2011, 32, 3135–3141. 10.1002/jcc.21886. PubMed DOI PMC
Jo S.; Kim T.; Iyer V. G.; Im W. Software News and Updates - CHARMM-GUI: A Web-Based Grraphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. 10.1002/jcc.20945. PubMed DOI
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1996, 118, 2309–2309. 10.1021/ja955032e. DOI
Bohne-Lang A.; von der Lieth C. W. GlyProt: in Silico Glycosylation of Proteins. Nucleic Acids Res. 2005, 33, W214–W219. 10.1093/nar/gki385. PubMed DOI PMC
Bohne A.; Lang E.; von der Lieth C. W. W3-SWEET: Carbohydrate Modeling by Internet. J. Mol. Model. 1998, 4, 33–43. 10.1007/s008940050068. DOI
Frank M.; Bohne-Lang A.; Wetter T.; von der Lieth C. W. Rapid Generation of a Representative Ensemble of N-Glycan Conformations. In Silico Biol. 2002, 2, 427–439. PubMed
Engelsen S. B.; Hansen P. I.; Perez S. POLYS 2.0: An Open Source Software Package for Building Three-Dimensional Structures of Polysaccharides. Biopolymers 2014, 101, 733–743. 10.1002/bip.22449. PubMed DOI
Rosen J.; Miguet L.; Perez S. Shape: Automatic Conformation Prediction of Carbohydrates Using a Genetic Algorithm. J. Cheminf. 2009, 1, 16.10.1186/1758-2946-1-16. PubMed DOI PMC
O’Boyle N. M.; Banck M.; James C. A.; Morley C.; Vandermeersch T.; Hutchison G. R. Open Babel: an Open Chemical Toolbox. J. Cheminf. 2011, 3, 33.10.1186/1758-2946-3-33. PubMed DOI PMC
Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. 10.1021/ct700301q. PubMed DOI
Paavilainen S.; Rog T.; Vattulainen I. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations. J. Phys. Chem. B 2011, 115, 3747–3755. 10.1021/jp111459b. PubMed DOI
Rudd P. M.; Morgan B. P.; Wormald M. R.; Harvey D. J.; vandenBerg C. W.; Davis S. J.; Ferguson M. A. J.; Dwek R. A. The Glycosylation of the Complement Regulatory Protein, Human Erythrocyte CD59. J. Biol. Chem. 1997, 272, 7229–7244. 10.1074/jbc.272.11.7229. PubMed DOI
Kaszuba K.; Grzybek M.; Orlowski A.; Danne R.; Rog T.; Simons K.; Coskun U.; Vattulainen I. N-Glycosylation as Determinant of Epidermal Growth Factor Receptor Conformation in Membranes. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 4334–4339. 10.1073/pnas.1503262112. PubMed DOI PMC
Lingwood D.; Binnington B.; Rog T.; Vattulainen I.; Grzybek M.; Coskun U.; Lingwood C. A.; Simons K. Cholesterol Modulates Glycolipid Conformation and Receptor Activity. Nat. Chem. Biol. 2011, 7, 260–262. 10.1038/nchembio.551. PubMed DOI
Kamel S.; Ali N.; Jahangir K.; Shah S. M.; El-Gendy A. A. Pharmaceutical Significance of Cellulose: A Review. eXPRESS Polym. Lett. 2008, 2, 758–778. 10.3144/expresspolymlett.2008.90. DOI
Abdul Khalil H.; Bhat A. H.; Yusra A. F. I. Green Composites from Sustainable Cellulose Nanofibrils: A Review. Carbohydr. Polym. 2012, 87, 963–979. 10.1016/j.carbpol.2011.08.078. DOI
Eichhorn S. J.; Dufresne A.; Aranguren M.; Marcovich N. E.; Capadona J. R.; Rowan S. J.; Weder C.; Thielemans W.; Roman M.; Renneckar S.; Gindl W.; Veigel S.; Keckes J.; Yano H.; Abe K.; Nogi M.; Nakagaito A. N.; Mangalam A.; Simonsen J.; Benight A. S.; Bismarck A.; Berglund L. A.; Peijs T. Review: Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1–33. 10.1007/s10853-009-3874-0. DOI
Paavilainen S.; McWhirter J. L.; Rog T.; Jarvinen J.; Vattulainen I.; Ketoja J. A. Mechanical Properties of Cellulose Nanofibrils Determined Through Atomistic Molecular Dynamics Simulations. Nord. Pulp Pap. Res. J. 2012, 27, 282–286. 10.3183/NPPRJ-2012-27-02-p282-286. DOI
Orlowski A.; Rog T.; Paavilainen S.; Manna M.; Heiskanen I.; Backfolk K.; Timonen J.; Vattulainen I. How Endoglucanase Enzymes Act on Cellulose Nanofibrils: Role of Amorphous Regions Revealed by Atomistic Simulations. Cellulose 2015, 22, 2911–2925. 10.1007/s10570-015-0705-0. DOI
Spiro R. G.Advances in Protein Chemistry. In Glycoproteins; Anfinsen C. B., Edsall J. T., Richards F. M., Eds.; Academic Press Inc., Elsevier Inc, 1973; pp 349–467. PubMed
Meyer B.; Möller H.. Glycopeptides and Glycoproteins. In Conformation of Glycopeptide and Glycoproteins; Wittmann V., Ed.; Springer-Verlag: Berlin, Heidelberg, 2006; pp 187–251.
Spiro R. G. Protein Glycosylation: Nature, Distribution, Enzymatic Formation, and Disease Implications of Glycopeptide Bonds. Glycobiology 2002, 12, 43R–56R. 10.1093/glycob/12.4.43R. PubMed DOI
Wormald M. R.; Rudd P. M.; Harvey D. J.; Chang S. C.; Scragg I. G.; Dwek R. A. Variations in Oligosaccharide-Protein Interactions in Immunoglobulin G Determine the Site-Specific Glycosylation Profiles and Modulate the Dynamic Motion of the Fc Oligosaccharides. Biochemistry 1997, 36, 1370–1380. 10.1021/bi9621472. PubMed DOI
Shental-Bechor D.; Levy Y. Folding of Glycoproteins: Toward Understanding the Biophysics of the Glycosylation Code. Curr. Opin. Struct. Biol. 2009, 19, 524–533. 10.1016/j.sbi.2009.07.002. PubMed DOI
Shental-Bechor D.; Levy Y. Effect of Glycosylation on Protein Folding: A Close Look at Thermodynamic Stabilization. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 8256–8261. 10.1073/pnas.0801340105. PubMed DOI PMC
Flintegaard T. V.; Thygesen P.; Rahbek-Nielsen H.; Levery S. B.; Kristensen C.; Clausen H.; Bolt G. N-Glycosylation Increases the Circulatory Half-Life of Human Growth Hormone. Endocrinology 2010, 151, 5326–5336. 10.1210/en.2010-0574. PubMed DOI
van Kooyk Y.; Rabinovich G. A. Protein-Glycan Interactions in the Control of Innate and Adaptive Immune Responses. Nat. Immunol. 2008, 9, 593–601. 10.1038/ni.f.203. PubMed DOI
Kornfeld S. Structure and Function of the Mannose 6-Phosphate/Insulinlike Gowth Factor II Receptors. Annu. Rev. Biochem. 1992, 61, 307–330. 10.1146/annurev.bi.61.070192.001515. PubMed DOI
Helenius A.; Aebi M. Intracellular Functions of N-linked Glycans. Science 2001, 291, 2364–2369. 10.1126/science.291.5512.2364. PubMed DOI
Ruiz-Arguelles A.; Llorente L. The Role of Complement Regulatory Proteins (CD55 and CD59) in the Pathogenesis of Autoimmune Hemocytopenias. Autoimmun. Rev. 2007, 6, 155–161. 10.1016/j.autrev.2006.09.008. PubMed DOI
Rog T.; Vattulainen I. Cholesterol, Sphingolipids, and Glycolipids: What Do We Know about Their Role in Raft-Like Membranes?. Chem. Phys. Lipids 2014, 184, 82–104. 10.1016/j.chemphyslip.2014.10.004. PubMed DOI
Manna M.; Rog T.; Vattulainen I. The Challenges of Understanding Glycolipid Functions: an Open Outlook Based on Molecular Simulations. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2014, 1841, 1130–1145. 10.1016/j.bbalip.2013.12.016. PubMed DOI
Sandvig K.; Bergan J.; Kavaliauskiene S.; Skotland T. Lipid Requirements for Entry of Protein Toxins into Cells. Prog. Lipid Res. 2014, 54, 1–13. 10.1016/j.plipres.2014.01.001. PubMed DOI
Coskun U.; Grzybek M.; Drechsel D.; Simons K. Regulation of Human EGF Receptor by Lipids. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 9044–9048. 10.1073/pnas.1105666108. PubMed DOI PMC
Lingwood C. A. Glycosphingolipid Functions. Cold Spring Harbor Perspect. Biol. 2011, 3, a011874.10.1101/cshperspect.a011874. PubMed DOI PMC
Ribeiro A. A. S. T.; Horta B. A. C.; de Alencastro R. B. MKTOP: a Program for Automatic Construction of Molecular Topologies. J. Braz. Chem. Soc. 2008, 19, 1433–1435. 10.1590/S0103-50532008000700031. DOI
N-Glycosylation can selectively block or foster different receptor-ligand binding modes