• This record comes from PubMed

Design of Multivalent Inhibitors for Preventing Cellular Uptake

. 2017 Sep 15 ; 7 (1) : 11689. [epub] 20170915

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28916832
PubMed Central PMC5601900
DOI 10.1038/s41598-017-11735-7
PII: 10.1038/s41598-017-11735-7
Knihovny.cz E-resources

Cellular entry, the first crucial step of viral infection, can be inhibited by molecules adsorbed on the virus surface. However, apart from using stronger affinity, little is known about the properties of such inhibitors that could increase their effectiveness. Our simulations showed that multivalent inhibitors can be designed to be much more efficient than their monovalent counterparts. For example, for our particular simulation model, a single multivalent inhibitor spanning 5 to 6 binding sites is enough to prevent the uptake compared to the required 1/3 of all the receptor binding sites needed to be blocked by monovalent inhibitors. Interestingly, multivalent inhibitors are more efficient in inhibiting the uptake not only due to their increased affinity but mainly due to the co-localization of the inhibited receptor binding sites at the virion's surface. Furthermore, we show that Janus-like inhibitors do not induce virus aggregation. Our findings may be generalized to other uptake processes including bacteria and drug-delivery.

See more in PubMed

Moss RB, Davey RT, Steigbigel RT, Fang F. Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. Journal of Antimicrobial Chemotherapy. 2010;65:1086–1093. doi: 10.1093/jac/dkq100. PubMed DOI

Qian X-J, Zhu Y-Z, Zhao P, Qi Z-T. Entry inhibitors: New advances in HCV treatment. Emerging Microbes and Infections. 2016;5:e3. doi: 10.1038/emi.2016.3. PubMed DOI PMC

Vácha R, Martinez-Veracoechea FJ, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano letters. 2011;11:5391–5395. doi: 10.1021/nl2030213. PubMed DOI

Ding H-m, Ma Y-q. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2012;33:5798–5802. doi: 10.1016/j.biomaterials.2012.04.055. PubMed DOI

Li Y, Yue T, Yang K, Zhang X. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials. 2012;33:4965–4973. doi: 10.1016/j.biomaterials.2012.03.044. PubMed DOI

Yue T, Zhang X. Molecular modeling of the pathways of vesicle–membrane interaction. Soft Matter. 2013;9:559–569. doi: 10.1039/C2SM26940F. DOI

Nangia S, Sureshkumar R. Effects of Nanoparticle Charge and Shape Anisotropy on Translocation through Cell Membranes. Langmuir. 2012;28:17666–17671. doi: 10.1021/la303449d. PubMed DOI

Niikura K, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS nano. 2013;7:3926–3938. doi: 10.1021/nn3057005. PubMed DOI

Joglekar M, Roggers RA, Zhao Y, Trewyn BG. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Advances. 2013;3:2454–2461. doi: 10.1039/c2ra22264g. DOI

Bhattacharjee S, et al. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale. 2013;5:4870–4883. doi: 10.1039/c3nr34266b. PubMed DOI PMC

Ding, H.-M. & Ma, Y.-Q. Theoretical and Computational Investigations of Nanoparticle-Biomembrane Interactions in Cellular Delivery. Small 1–17 (2014). PubMed

Schubertová V, Martinez-Veracoechea FJ, Vácha R. Influence of ligand distribution on uptake efficiency. Soft Matter. 2015;11:2726–2730. doi: 10.1039/C4SM02815E. PubMed DOI

Richards DM, Endres RG. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. Proceedings of the National Academy of Sciences. 2016;113:6113–6118. doi: 10.1073/pnas.1521974113. PubMed DOI PMC

Tollis S, Dart AE, Tzircotis G, Endres RG. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC Systems Biology. 2010;4:149. doi: 10.1186/1752-0509-4-149. PubMed DOI PMC

Ewers H, Helenius A. Lipid-mediated endocytosis. Cold Spring Harbor perspectives in biology. 2011;3:a004721. doi: 10.1101/cshperspect.a004721. PubMed DOI PMC

Rydell G, Svensson L, Larson G, Johannes L, Römer W. Human GII.4 norovirus VLP induces membrane invaginations on giant unilamellar vesicles containing secretor gene dependent α1,2-fucosylated glycosphingolipids. BBA Biomembranes. 2013;1828:1840–1845. doi: 10.1016/j.bbamem.2013.03.016. PubMed DOI

Le Bihan O, et al. Cryo-electron tomography of nanoparticle transmigration into liposome. Journal of Structural Biology. 2009;168:419–425. doi: 10.1016/j.jsb.2009.07.006. PubMed DOI

Muro S. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. Journal of Cell Science. 2003;116:1599–1609. doi: 10.1242/jcs.00367. PubMed DOI

Martinez-Veracoechea FJ, Frenkel D. Designing super selectivity in multivalent nano-particle binding. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:10963–10968. doi: 10.1073/pnas.1105351108. PubMed DOI PMC

Curk T, Dobnikar J, Frenkel D. Rational design of molecularly imprinted polymers. Soft Matter. 2016;12:35–44. doi: 10.1039/C5SM02144H. PubMed DOI

Albertazzi L, et al. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences. 2013;110:12203–12208. doi: 10.1073/pnas.1303109110. PubMed DOI PMC

Bhatia S, Camacho LC, Haag R. Pathogen Inhibition by Multivalent Ligand Architectures. Journal of the American Chemical Society. 2016;138:8654–8666. doi: 10.1021/jacs.5b12950. PubMed DOI

Fasting C, et al. Multivalency as a Chemical Organization and Action Principle. Angewandte Chemie International Edition. 2012;51:10472–10498. doi: 10.1002/anie.201201114. PubMed DOI

Schneider H-J. Binding Mechanisms in Supramolecular Complexes. Angewandte Chemie International Edition. 2009;48:3924–3977. doi: 10.1002/anie.200802947. PubMed DOI

Moser R, et al. Neutralization of a common cold virus by concatemers of the third ligand binding module of the VLDL-receptor strongly depends on the number of modules. Virology. 2005;338:259–269. doi: 10.1016/j.virol.2005.05.016. PubMed DOI

Nicodemou A, et al. Rhinovirus-stabilizing activity of artificial VLDL-receptor variants defines a new mechanism for virus neutralization by soluble receptors. FEBS Letters. 2005;579:5507–5511. doi: 10.1016/j.febslet.2005.09.013. PubMed DOI

Reynwar BJ, et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature. 2007;447:461–464. doi: 10.1038/nature05840. PubMed DOI

Sanchez, L. & Yu, Y. Half-PEGylated Particles Evade Macrophage Uptake as Effectively as Fully PEGylated Ones. Nanoscale in press (2016).

Cooke IR, Deserno M. Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. The Journal of Chemical Physics. 2005;123:224710. doi: 10.1063/1.2135785. PubMed DOI

Rossmann MG, He Y, Kuhn RJ. Picornavirus–receptor interactions. Trends in Microbiology. 2002;10:324–331. doi: 10.1016/S0966-842X(02)02383-1. PubMed DOI

Limbach H, Arnold A, Mann B, Holm C. ESPResSo—an extensible simulation package for research on soft matter systems. Computer Physics Communications. 2006;174:704–727. doi: 10.1016/j.cpc.2005.10.005. DOI

Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Physical Review E. 2004;69:031903. doi: 10.1103/PhysRevE.69.031903. PubMed DOI

Vácha R, Martinez-Veracoechea FJ, Frenkel D. Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction. ACS nano. 2012;6:10598–10605. PubMed

Dasgupta S, Auth T, Gompper G. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Letters. 2014;14:687–693. doi: 10.1021/nl403949h. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...