Design of Multivalent Inhibitors for Preventing Cellular Uptake
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28916832
PubMed Central
PMC5601900
DOI
10.1038/s41598-017-11735-7
PII: 10.1038/s41598-017-11735-7
Knihovny.cz E-resources
- MeSH
- Antiviral Agents chemistry pharmacology MeSH
- Virus Internalization drug effects MeSH
- Drug Design * MeSH
- Molecular Dynamics Simulation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiviral Agents MeSH
Cellular entry, the first crucial step of viral infection, can be inhibited by molecules adsorbed on the virus surface. However, apart from using stronger affinity, little is known about the properties of such inhibitors that could increase their effectiveness. Our simulations showed that multivalent inhibitors can be designed to be much more efficient than their monovalent counterparts. For example, for our particular simulation model, a single multivalent inhibitor spanning 5 to 6 binding sites is enough to prevent the uptake compared to the required 1/3 of all the receptor binding sites needed to be blocked by monovalent inhibitors. Interestingly, multivalent inhibitors are more efficient in inhibiting the uptake not only due to their increased affinity but mainly due to the co-localization of the inhibited receptor binding sites at the virion's surface. Furthermore, we show that Janus-like inhibitors do not induce virus aggregation. Our findings may be generalized to other uptake processes including bacteria and drug-delivery.
Central European Institute of Technology Masaryk University Brno Czech Republic
See more in PubMed
Moss RB, Davey RT, Steigbigel RT, Fang F. Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. Journal of Antimicrobial Chemotherapy. 2010;65:1086–1093. doi: 10.1093/jac/dkq100. PubMed DOI
Qian X-J, Zhu Y-Z, Zhao P, Qi Z-T. Entry inhibitors: New advances in HCV treatment. Emerging Microbes and Infections. 2016;5:e3. doi: 10.1038/emi.2016.3. PubMed DOI PMC
Vácha R, Martinez-Veracoechea FJ, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano letters. 2011;11:5391–5395. doi: 10.1021/nl2030213. PubMed DOI
Ding H-m, Ma Y-q. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2012;33:5798–5802. doi: 10.1016/j.biomaterials.2012.04.055. PubMed DOI
Li Y, Yue T, Yang K, Zhang X. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials. 2012;33:4965–4973. doi: 10.1016/j.biomaterials.2012.03.044. PubMed DOI
Yue T, Zhang X. Molecular modeling of the pathways of vesicle–membrane interaction. Soft Matter. 2013;9:559–569. doi: 10.1039/C2SM26940F. DOI
Nangia S, Sureshkumar R. Effects of Nanoparticle Charge and Shape Anisotropy on Translocation through Cell Membranes. Langmuir. 2012;28:17666–17671. doi: 10.1021/la303449d. PubMed DOI
Niikura K, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS nano. 2013;7:3926–3938. doi: 10.1021/nn3057005. PubMed DOI
Joglekar M, Roggers RA, Zhao Y, Trewyn BG. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Advances. 2013;3:2454–2461. doi: 10.1039/c2ra22264g. DOI
Bhattacharjee S, et al. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale. 2013;5:4870–4883. doi: 10.1039/c3nr34266b. PubMed DOI PMC
Ding, H.-M. & Ma, Y.-Q. Theoretical and Computational Investigations of Nanoparticle-Biomembrane Interactions in Cellular Delivery. Small 1–17 (2014). PubMed
Schubertová V, Martinez-Veracoechea FJ, Vácha R. Influence of ligand distribution on uptake efficiency. Soft Matter. 2015;11:2726–2730. doi: 10.1039/C4SM02815E. PubMed DOI
Richards DM, Endres RG. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. Proceedings of the National Academy of Sciences. 2016;113:6113–6118. doi: 10.1073/pnas.1521974113. PubMed DOI PMC
Tollis S, Dart AE, Tzircotis G, Endres RG. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC Systems Biology. 2010;4:149. doi: 10.1186/1752-0509-4-149. PubMed DOI PMC
Ewers H, Helenius A. Lipid-mediated endocytosis. Cold Spring Harbor perspectives in biology. 2011;3:a004721. doi: 10.1101/cshperspect.a004721. PubMed DOI PMC
Rydell G, Svensson L, Larson G, Johannes L, Römer W. Human GII.4 norovirus VLP induces membrane invaginations on giant unilamellar vesicles containing secretor gene dependent α1,2-fucosylated glycosphingolipids. BBA Biomembranes. 2013;1828:1840–1845. doi: 10.1016/j.bbamem.2013.03.016. PubMed DOI
Le Bihan O, et al. Cryo-electron tomography of nanoparticle transmigration into liposome. Journal of Structural Biology. 2009;168:419–425. doi: 10.1016/j.jsb.2009.07.006. PubMed DOI
Muro S. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. Journal of Cell Science. 2003;116:1599–1609. doi: 10.1242/jcs.00367. PubMed DOI
Martinez-Veracoechea FJ, Frenkel D. Designing super selectivity in multivalent nano-particle binding. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:10963–10968. doi: 10.1073/pnas.1105351108. PubMed DOI PMC
Curk T, Dobnikar J, Frenkel D. Rational design of molecularly imprinted polymers. Soft Matter. 2016;12:35–44. doi: 10.1039/C5SM02144H. PubMed DOI
Albertazzi L, et al. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences. 2013;110:12203–12208. doi: 10.1073/pnas.1303109110. PubMed DOI PMC
Bhatia S, Camacho LC, Haag R. Pathogen Inhibition by Multivalent Ligand Architectures. Journal of the American Chemical Society. 2016;138:8654–8666. doi: 10.1021/jacs.5b12950. PubMed DOI
Fasting C, et al. Multivalency as a Chemical Organization and Action Principle. Angewandte Chemie International Edition. 2012;51:10472–10498. doi: 10.1002/anie.201201114. PubMed DOI
Schneider H-J. Binding Mechanisms in Supramolecular Complexes. Angewandte Chemie International Edition. 2009;48:3924–3977. doi: 10.1002/anie.200802947. PubMed DOI
Moser R, et al. Neutralization of a common cold virus by concatemers of the third ligand binding module of the VLDL-receptor strongly depends on the number of modules. Virology. 2005;338:259–269. doi: 10.1016/j.virol.2005.05.016. PubMed DOI
Nicodemou A, et al. Rhinovirus-stabilizing activity of artificial VLDL-receptor variants defines a new mechanism for virus neutralization by soluble receptors. FEBS Letters. 2005;579:5507–5511. doi: 10.1016/j.febslet.2005.09.013. PubMed DOI
Reynwar BJ, et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature. 2007;447:461–464. doi: 10.1038/nature05840. PubMed DOI
Sanchez, L. & Yu, Y. Half-PEGylated Particles Evade Macrophage Uptake as Effectively as Fully PEGylated Ones. Nanoscale in press (2016).
Cooke IR, Deserno M. Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. The Journal of Chemical Physics. 2005;123:224710. doi: 10.1063/1.2135785. PubMed DOI
Rossmann MG, He Y, Kuhn RJ. Picornavirus–receptor interactions. Trends in Microbiology. 2002;10:324–331. doi: 10.1016/S0966-842X(02)02383-1. PubMed DOI
Limbach H, Arnold A, Mann B, Holm C. ESPResSo—an extensible simulation package for research on soft matter systems. Computer Physics Communications. 2006;174:704–727. doi: 10.1016/j.cpc.2005.10.005. DOI
Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Physical Review E. 2004;69:031903. doi: 10.1103/PhysRevE.69.031903. PubMed DOI
Vácha R, Martinez-Veracoechea FJ, Frenkel D. Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction. ACS nano. 2012;6:10598–10605. PubMed
Dasgupta S, Auth T, Gompper G. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Letters. 2014;14:687–693. doi: 10.1021/nl403949h. PubMed DOI