• This record comes from PubMed

Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

. 2017 Jul ; 53 (7) : 5209-5219. [epub] 20170702

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.

Centre for Ecology and Hydrology Wallingford UK

Computational Science Center University of Vienna Vienna Austria

Department of Land and Water Resources Management Faculty of Civil Engineering Slovak University of Technology in Bratislava Bratislava Slovakia

Department of Land Environment Agriculture and Forestry University of Padova Padua Italy

Department of Soil Science University of Kassel Kassel Germany

Division of Agronomy Department of Crop Sciences University of Natural Resources and Life Sciences Tulln Austria

Faculty of Agricultural and Environmental Sciences Rostock University Rostock Germany

Faculty of Science University of Hradec Králové Hradec Králové Czech Republic

IDAEA CSIC Barcelona Spain

Institute of Ecology University of Innsbruck Innsbruck Austria

Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology Vienna Austria

Institute of Hydrology Slovak Academy of Sciences Bratislava Slovakia

Institute of Plant Nutrition and Soil Science Christian Albrechts Universität zu Kiel Kiel Germany

Laboratoire d'Océanographie et du Climat Paris France

Laboratory for Landscape and Cultural Heritage University of Florence Florence Italy

Lancaster Environment Centre Lancaster University Lancaster UK

Professor Emeritus Institute of Forest Ecology University of Natural Resources and Life Sciences Vienna Austria

School of Civil Engineering and Geosciences Newcastle University Newcastle upon Tyne UK

School of Geography University of Leeds Leeds UK

University of Bern Bern Switzerland

Wageningen Environmental Research Wageningen University and Research Wageningen Netherlands

See more in PubMed

Acreman, M. , and Holden J. (2013), How wetlands affect floods, Wetlands, 33, 773–786.

Agnoletti M. (Ed.) (2013), Italian Historical Rural Landscapes, Cultural Values for the Environment and Rural Development, Springer, Netherlands.

Agnoletti, M. , Emanueli F., Maggiari G., and Preti F. (2012), Landscape and hydrogeological risk, in The Disaster of 25 October 2011 in Cinque Terre, Studi Ricerche, edited by Agnoletti M., Carandini A., and Santagata W., Bandecchi e Vivaldi, Pontedera, Pisa.

Alaoui, A. , and Goetz B. (2008), Dye tracer and infiltration experiments to investigate macropore flow, Geoderma, 144, 279–286, doi:10.1016/j.geoderma.2007.11.020. DOI

Alaoui, A. , Lipiec J., and Gerke H. H. (2011), A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective, Soil Tillage Res., 115–116, 1–15.

Alila, Y. , Kuras P. K., Schnorbus M., and Hudson R. (2009), Forests and floods: A new paradigm sheds light on age‐old controversies, Water Resour. Res., 45, W08416, doi:10.1029/2008WR007207. DOI

Andréassian, V. (2004), Waters and forests: From historical controversy to scientific debate, J. Hydrol., 291(1–2), 1–27.

Band, L. E. , et al. (2014), Ecohydrological flow networks in the subsurface, Ecohydrology, 7(4), 1073–1078.

Batey, T. (2009), Soil compaction and soil management—A review, Soil Use Manage., 25, 335–345, doi:10.1111/j.1475-2743.2009.00236.x. DOI

Bathurst, J. C. , et al. (2011), Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 1: Field data analysis, J. Hydrol., 400(3), 281–291.

Bernsteinová, J. , Bässler C., Zimmermann L., Langhammer J., and Beudert B. (2015), Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes, J. Hydrol. Hydromech., 63(4), 342–352, doi:10.1515/johh-2015-0037. DOI

Blann, K. L. , Anderson J. L., Sands G. R., and Vondracek B. (2009), Effects of agricultural drainage on aquatic ecosystems: A review, critical reviews, Environ. Sci. Technol., 39(11), 909–1001, doi:10.1080/10643380801977966. DOI

Blöschl G. (Ed.) (2013), Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales, Cambridge Univ. Press, Cambridge, U. K.

Blöschl, G. , Grayson R. B., and Sivapalan M. (1995), On the representative elementary area (REA) concept and its utility for distributed rainfall‐runoff modelling, Hydrol. Processes, 9, 313–330.

Blöschl, G. , Ardoin‐Bardin S., Bonell M., Dorninger M., Goodrich D., Gutknecht D., Matamoros D., Merz B., Shand P., and Szolgay J. (2007), At what scales do climate variability and land cover change impact on flooding and low flows?, Hydrol. Processes, 21, 1241–1247.

Bradshaw, C. J. , Sodhi N. S., Peh K. S. H., and Brook B. W. (2007), Global evidence that deforestation amplifies flood risk and severity in the developing world, Global Change Biol., 13(11), 2379–2395.

Brown, E. A. , Zhang L., McMahon A. T., Western W. A., and Vertessy A. R. (2005), A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, J. Hydrol., 310, 28–61.

Cerdà, A. , Flanagan D. C., le Bissonnais Y., and Boardman J. (2009), Soil erosion and agriculture, Soil Tillage Res., 106(1), 107–108.

Changnon, S. A. , and Demissie M. (1996), Detection of changes in streamflow and floods resulting from climate fluctuations and land use‐drainage changes, Clim. Change, 32(4), 411–421.

Dagnew, D. C. , et al. (2015), Impact of conservation practices on runoff and soil loss in the sub‐humid Ethiopian Highlands: The Debre Mawi watershed, J. Hydrol. Hydromech., 63(3), 210–219, doi:10.1515/johh-2015-0021. DOI

Deasy, C. , Titman A., and Quinton J. N. (2014), Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale, J. Environ. Manage., 132, 304–312. PubMed

Dooge, J. C. I. (1982), Parameterization of hydrologic processes, in Land Surface Processes in Atmospheric General Circulation Models, edited by Eagleson P. S., pp. 243–288, Cambridge Univ. Press, London.

Dooge, J. C. I. (1986), Looking for hydrologic laws, Water Resour. Res., 22(9), 46–58.

Dudal, R. (2005), The sixth factor of soil formation, Eurasian Soil Sci., 38, 60–65.

Duncan, R. A. , Bethune M. G., Thayalakumaran T., Christen E. W., and McMahon T. A. (2008), Management of salt mobilisation in the irrigated landscape—A review of selected irrigation regions, J. Hydrol., 351(1–2), 238–252.

Dörner, J. , and Horn R. (2006), Anthropogenic and pedogenetic effects on the (an)isotropic behaviour of hydraulic and mechanical properties in structured soils, Proc. ISTRO, 17, 220–232.

Dotterweich, M. (2013), The history of human‐induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis, Geomorphology, 201, 1–34.

Evaristo, J. , Jasechko S., and McDonnell J. J. (2015), Global separation of plant transpiration from groundwater and streamflow, Nature, 525(7567), 91–94. PubMed

Fohrer, N. , Schmalz B., Tavares F., and Golon J. (2007), Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems [in German], Hydrol. Wasserbewirtsch., 51(4), 164–169.

Framji, K. , Garg C., and Luthra D. (1982), Irrigation and Drainage in the World: A Global Review, vol. II, Int. Comm. on Irrig. and Drain, New Delhi.

Fraser, C. E. , Mcintyre N., Jackson B. M., and Wheater H. S. (2013), Upscaling hydrological processes and land management change impacts using a metamodeling procedure, Water Resour. Res., 49, 5817–5833, doi:10.1002/wrcr.20432. DOI

Gaal, L. , Szolgay J., Kohnova S., Parajka J., Merz R., Viglione A., and Blöschl G. (2012), Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology, Water Resour. Res., 48, W04511, doi:10.1029/2011WR011509. DOI

Gaillard, M. J. , Morrison K., and Whitehouse N. (2015), Past anthropogenic land use and land cover change at the global scale for climate modelling studies: PAGES LandCover6k Working Group, Quat. Perspect., 22(2), 25–27.

Gallart, F. , Llorens P., and Latron J. (1994), Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin, J. Hydrol., 159(1), 291–303.

Gieska, M. , van der Ploeg R. R., Schweigert P., and Pinter N. (2003), Physikalische Bodendegradierung in der Hildesheimer Börde und das Bundes‐Bodenschutzgesetz, Berichte über Landwirtschaft, 81(4), 485–511.

Gucinski, H. , Furniss M. J., Ziemer R. R., and Brookes M. H. (2001), Forest roads: A synthesis of scientific information, Gen. Tech. Rep. PNWGTR‐509, U.S. Dep. of Agric., For. Serv., Pac. Northwest Res. Stn., Portland, Oreg.

Gupta, S. C. , Kessler A. C., Brown M. K., and Zvomuya F. (2015), Climate and agricultural land use change impacts on streamflow in the upper midwestern United States, Water Resour. Res., 51, 5301–5317, doi:10.1002/2015WR017323. DOI

Guzman, Ch. D., Tilahun S. A., Dagnew D. C., Zegeye A. D., Tebebu T. Y., Yitaferu B., and Steenhuis T. S. (2017), Modeling sediment concentration and discharge variations in a small Ethiopian watershed with contributions from an unpaved road, J. Hydrol. Hydromech., 65(1), 1–17, doi:10.1515/johh-2016-0051. DOI

Hall, J. , et al. (2014), Understanding flood regime changes in Europe: A state of the art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, doi:10.5194/hess-18-2735-2014. DOI

Hansen, M. C. , et al. (2013), High‐resolution global maps of 21st‐century forest cover change, Science, 342(6160), 850–853. PubMed

Harte, J. (1988), Consider a Spherical Cow: A Course in Environmental Problem Solving, Univ. Sci. Books, Sausalito, Calif.

Hartge, K. H. , and Horn R. (2016), Essential Soil Physics: An Introduction to Soil Processes, Functions, Structure and Mechanics, Schweizerbart Sci. Publ, Stuttgart, Germany.

Hess, T. M. , Holman I. P., Rose S. C., Rosolova Z., and Parrott A. (2010), Estimating the impact of rural land management changes on catchment runoff generation in England and Wales, Hydrol. Processes, 24, 1357–1368, doi:10.1002/hyp.7598. DOI

Holden, J. (2005), Peatland hydrology and carbon cycling: Why small‐scale process matters, Philos. Trans. R. Soc. A, 363, 2891–2913, doi:10.1098/rsta.2005.1671. PubMed DOI

Holden, J. , Burt T. P., Evans M. G., and Horton M. (2006), Impact of land drainage on peatland hydrology, J. Environ. Qual., 35, 1764–1778, doi:10.2134/jeq2005.0477. PubMed DOI

Holman, I. P. , Hollis J. M., Bramley M. E., and Thompson T. R. E. (2003), The contribution of soil structural degradation to catchment flooding: A preliminary investigation of the 2000 floods in England and Wales, Hydrol. Earth Syst. Sci., 7(5), 754–765.

Holländer, H. M. , et al. (2009), Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data, Hydrol. Earth Syst. Sci., 13, 2069–2094, doi:10.5194/hess-13-2069-2009. DOI

Hollis, G. E. (1975), The effect of urbanization on floods of different recurrence interval, Water Resour. Res., 11(3), 431–435.

Iversen, B. V. , Berisso F. E., Koestel J., Lamandé M., de Jonge L. W., Keller T., Arvidsson J., and Schjønning P. (2012), Soil hydraulic properties and preferential flow in relation to basic soil properties and soil compaction, in NJF‐Seminar 448 on Soil Compaction—Effects on Soil Functions and Strategies for Prevention, vol. 8, edited by Alakukku L., Kymäläinen H.‐R., and Pienmunne E., pp. 105–107, NJF, Helsinki, Finland.

Kellner, E. , and Hubbart J. A. (2016), A comparison of the spatial distribution of vadose zone water in forested and agricultural floodplains a century after harvest, Sci. Total Environ., 542, 153–161, doi:10.1016/j.scitotenv.2015.10.080. PubMed DOI

King, K. W. , Fausey N. R., and Williams M. R. (2014), Effect of subsurface drainage on streamflow in an agricultural headwater watershed, J. Hydrol., 519, 438–445.

Koutsoyiannis, D. , Blöschl G., Bárdossy A., Cudennec C., Hughes D., Montanari A., Neuweiler I., and Savenije H. (2016), Joint editorial: Fostering innovation and improving impact assessment for journal publications in hydrology, Water Resour. Res., 52, 2399–2402, doi:10.1002/2016WR018895. DOI

Leitinger, G. , Tasser E., Newesely C., Obojes N., and Tappeiner U. (2010), Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use, J. Hydrol., 385(1–4), 95–104.

Lins, H. F. , and Slack J. R. (1999), Streamflow trends in the United States, Geophys. Res. Lett., 26(2), 227–230.

Merz, B. , et al. (2014), Floods and climate: Emerging perspectives for flood risk assessment and management, Nat. Hazards Earth Syst. Sci., 14, 1921–1942, doi:10.5194/nhess-14-1921-2014. DOI

Messier, C. , et al. (2015), From management to stewardship: Viewing forests as complex adaptive systems in an uncertain world, Conserv. Lett., 8(5), 368–377.

Montanari, A. , Blöschl G., Cai X., Mackay D. S., Michalak A. M., Rajaram H., and Sander G. (2013), Editorial: Toward 50 years of Water Resources Research, Water Resour. Res., 49, 7841–7842, doi:10.1002/2013WR014986. DOI

Mutema, M. , Chaplot V., Jewitt G., Chivenge P., and Blöschl G. (2015), Annual water, sediment, nutrient, and organic carbon fluxes in river basins: A global meta‐analysis as a function of scale, Water Resour. Res., 51, 8949–8972, doi:10.1002/2014WR016668. DOI

Nicolis, G. , and Nicolis C. (2007), Foundations of Complex Systems, World Scientific Publishing Co. Pte. Ltd., Singapore.

O'Connell, P. E. , Ewen J., O'Donnell G., and Quinn P. (2007), Is there a link between agricultural land‐use management and flooding?, Hydrol. Earth Syst. Sci., 11, 96–107, doi:10.5194/hess-11-96-2007. DOI

Peng, X. , and Horn R. (2008), Time‐dependent, anisotropic pore structure and soil strength in a 10‐year period after intensive tractor wheeling under conservation and conventional tillage, J. Plant Nutr. Soil Sci., 171(6), 936–944.

Perdigão, R. A. P. , and Blöschl G. (2014), Spatiotemporal flood sensitivity to annual precipitation: Evidence for landscape‐climate coevolution, Water Resour. Res., 50, 5492–5509, doi:10.1002/2014WR015365. DOI

Pfister, L. , Wetzel C. E., Martínez‐Carreras N., Iffly J. F., Klaus J., Holko L., and McDonnell J. J. (2015), Examination of aerial diatom flushing across watersheds in Luxembourg, Oregon and Slovakia for tracing episodic hydrological connectivity, J. Hydrol. Hydromech., 63(3), 235–245, doi:10.1515/johh-2015-0031. DOI

Pires, C. A. L. , and Perdigão R. A. P. (2015), Non‐Gaussian interaction information: Estimation, optimization and diagnostic application of triadic wave resonance, Nonlinear Processes Geophys., 22, 87–108, doi:10.5194/npg-22-87-2015. DOI

Potter, K. W. (1991), Hydrological impacts of changing land management practices in a moderate‐sized agricultural catchment, Water Resour. Res., 27(5), 845–855.

Rahman, M. M. , Lin Z., Jia X., Steele D. D., and DeSutter T. M. (2014), Impact of subsurface drainage on streamflows in the Red River of the North basin, J. Hydrol., 511, 474–483, doi:10.1016/j.jhydrol.2014.01.070. DOI

Rawlins, B. G. , Baird A. J., Trudgll S. T., and Hornung M. (1997), Absence of preferential flows in the percolating waters of a coniferous forest soil, Hydrol. Processes, 11, 575–585.

Robinson, M. (1990), Impact of improved land drainage on river flows, IH Rep. 113, Inst. of Hydrol., Wallingford, U. K.

Romero‐Díaz, M. A. , Martínez‐Hernández C., and Belmonte‐Serrato F. (2016), Procesos de erosión en áreas abandonadas de la Región de Murcia, in Abandono de cultivos en la Región de Murcia, edited by M. Romero‐Díaz, Consecuencias Geomorfológicas, Ediciones de la Universidad de Murcia, Murcia, Spain.

Rycroft, D. W. , and Robinson M. (2008), Drainage: Hydrologic impacts, in Encyclopedia of Water Science, pp. 176–179 CRC Press, Taylor & Francis Group, Fla.

Schwen, A. , Bodner G., Scholl P., Buchan G. D., and Loiskandl W. (2011), Temporal dynamics of soil hydraulic properties and the water‐conducting porosity under different tillage, Soil Tillage Res., 113, 89–98, doi:10.1016/j.still.2011.02.005. DOI

Silgram, M. , et al. (2010), Hillslope scale surface runoff, sediment and nutrient losses associated with tramline wheelings, Earth Surf. Processes Landforms, 35(6), 699–706.

Sivapalan, M. , and Blöschl G. (2015), Time scale interactions and the coevolution of humans and water, Water Resour. Res., 51, 6988–7022, doi:10.1002/2015WR017896. DOI

Teuffel K., Baumgarten M., Hanewinkel M., Konold W., Spiecker H., Sauter H.‐U., Wilpert von K. (Eds.) (2005), Waldumbau für eine zukunftsorientierte Waldwirtschaft, 422 pp., Springer, Berlin Heidelberg.

Tiemeyer, B. , Kahle P., and Lennartz B. (2006), Nutrient losses from artificially drained catchments in North‐Eastern Germany at different scales, Agric. Water Manage., 85(1–2), 47–57.

Van Dijk, A. I. J. M. , Bruijnzeel L. A., Vertessy R. A., and Ruijter J. (2005), Runoff and sediment generation on bench‐terraced hillsides: Measurements and up‐scaling of a field‐based model, Hydrol. Processes, 19, 1667–1685.

Vieira, D. C. S. , et al. (2015), Does soil burn severity affect the post‐fire runoff and interrill erosion response? A review based on meta‐analysis of field rainfall simulation data, J. Hydrol., 523, 452–464.

Viglione, A. , Merz B., Viet Dung N., Parajka J., Nester T., and Blöschl G. (2016), Attribution of regional flood changes based on scaling fingerprints, Water Resour. Res., 52, 5322–5340, doi:10.1002/2016WR019036. PubMed DOI PMC

Vose, J. M. , Sun G., Ford C. R., Bredemeier M., Otsuki K., Wei X., Zhang Z., and Zhang L. (2011), Forest ecohydrological research in the 21st century: What are the critical needs?, Ecohydrology, 4(2), 146–158.

Wheater, H. , and Evans E. (2009), Land use, water management and future flood risk, Land Use Policy, 26, 251–264, doi:10.1016/j.landusepol.2009.08.019. DOI

Western, A. W. , Blöschl G., and Grayson R. B. (1998), How well do indicator variograms capture the spatial connectivity of soil moisture?, Hydrol. Processes, 12, 1851–1868.

Wilson, G. V. , Nieber J. L., Sidle R. C., and Fox G. A. (2013), Internal erosion during soil pipeflow: State of the science for experimental and numerical analysis, Trans. ASABE, 56(2), 465–478.

Zacharias, S. , et al. (2011), A network of terrestrial environmental observatories in Germany, Vadose Zone J., 10(3), 955–973.

Zink, A. , Fleige H., and Horn R. (2011), Prediction and detection of harmful compaction impact in loess soils with a threshold value based indicator system, Soil Tillage Res., 114, 127–134.

Zucker L. A., and Brown L. C. (Eds.) (1998), Agricultural Drainage: Water Quality Impacts and Subsurface Drainage Studies in the Midwest, vol. 871, Ohio State Univ. Ext., Ohio.

Zumr, D. , Dostál T., and Devátý J. (2015), Identification of prevailing storm runoff generation mechanisms in an intensively cultivated catchment, J. Hydrol. Hydromech., 63(3), 246–254, doi:10.1515/johh-2015-0022. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...