Modification of C Terminus Provides New Insights into the Mechanism of α-Synuclein Aggregation

. 2017 Nov 21 ; 113 (10) : 2182-2191. [epub] 20170920

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28939194
Odkazy

PubMed 28939194
PubMed Central PMC5700244
DOI 10.1016/j.bpj.2017.08.027
PII: S0006-3495(17)30920-7
Knihovny.cz E-zdroje

Aggregation of neuronal protein α-synuclein leads to the formation of amyloid fibrils, which are associated with the development of Parkinson's disease. The mechanism of α-synuclein pathology is not fully understood and is a subject of active research in the field. To tackle this problem, the fusions of fluorescent proteins to α-synuclein C-terminus are often used in cellular and animal studies. The effects induced by such α-synuclein sequence extension on α-synuclein aggregation propensity are, however, not systematically examined despite the evidence that the negatively charged C-terminus plays a critical role in the regulation of α-synuclein aggregation. In this work, we investigated how the charge and length variations of the C-terminus affect the aggregation propensity of α-synuclein. To address these questions, we prepared mutants of α-synuclein carrying additional moieties of different charge and length at the protein C-terminus. We determined the rates of two different aggregation stages (primary nucleation and elongation) based on a thioflavin T kinetic assay. We observed that all mutants bearing neutrally charged moieties of different length fibrilized slower than wild-type α-synuclein. The primary nucleation and elongation rates strongly decreased with increase of the C-terminal extension length. Meanwhile, charge variation of the C-terminus significantly changed the rate of α-synuclein nucleation, but did not markedly affect the rate of fibril elongation. Our data demonstrate that both the charge and length of the C-terminus play an important role at the stage of initial fibril formation, but the stage of fibril elongation is affected mainly by the length of C-terminal extension. In addition, our results suggest that there are at least two steps of incorporation of α-synuclein monomers into the amyloid fibril: namely, the initial monomer binding to the fibril end (charge-dependent, relatively fast), and the subsequent conformational change of the protein (charge-independent, relatively slow, and thus the rate-limiting step).

Zobrazit více v PubMed

Fink A.L. The aggregation and fibrillation of α-synuclein. Acc. Chem. Res. 2006;39:628–634. PubMed

Luna E., Luk K.C. Bent out of shape: α-synuclein misfolding and the convergence of pathogenic pathways in Parkinson’s disease. FEBS Lett. 2015;589(24 Pt A):3749–3759. PubMed PMC

Herva M.E., Spillantini M.G. Parkinson’s disease as a member of prion-like disorders. Virus Res. 2015;207:38–46. PubMed

Emanuele M., Chieregatti E. Mechanisms of α-synuclein action on neurotransmission: cell-autonomous and non-cell autonomous role. Biomolecules. 2015;5:865–892. PubMed PMC

Butler B., Sambo D., Khoshbouei H. α-Synuclein modulates dopamine neurotransmission. J. Chem. Neuroanat. 2016;83–84:41–49. PubMed PMC

Breydo L., Wu J.W., Uversky V.N. α-Synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta. 2012;1822:261–285. PubMed

Uversky V.N., Eliezer D. Biophysics of Parkinson’s disease: structure and aggregation of α-synuclein. Curr. Protein Pept. Sci. 2009;10:483–499. PubMed PMC

Oueslati A. Implication of α-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J. Parkinsons Dis. 2016;6:39–51. PubMed PMC

Oueslati A., Fournier M., Lashuel H.A. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog. Brain Res. 2010;183:115–145. PubMed

Tarutani A., Suzuki G., Hasegawa M. The effect of fragmented pathogenic α-synuclein seeds on prion-like propagation. J. Biol. Chem. 2016;291:18675–18688. PubMed PMC

van Raaij M.E., van Gestel J., Subramaniam V. Concentration dependence of α-synuclein fibril length assessed by quantitative atomic force microscopy and statistical-mechanical theory. Biophys. J. 2008;95:4871–4878. PubMed PMC

Vilar M., Chou H.T., Riek R. The fold of α-synuclein fibrils. Proc. Natl. Acad. Sci. USA. 2008;105:8637–8642. PubMed PMC

Der-Sarkissian A., Jao C.C., Langen R. Structural organization of α-synuclein fibrils studied by site-directed spin labeling. J. Biol. Chem. 2003;278:37530–37535. PubMed

Qin Z., Hu D., Fink A.L. Role of different regions of α-synuclein in the assembly of fibrils. Biochemistry. 2007;46:13322–13330. PubMed

Nath S., Meuvis J., Engelborghs Y. Early aggregation steps in α-synuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophys. J. 2010;98:1302–1311. PubMed PMC

Arosio P., Knowles T.P., Linse S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 2015;17:7606–7618. PubMed PMC

Fändrich M. Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils. J. Mol. Biol. 2007;365:1266–1270. PubMed

Fauerbach J.A., Yushchenko D.A., Jares-Erijman E.A. Supramolecular non-amyloid intermediates in the early stages of α-synuclein aggregation. Biophys. J. 2012;102:1127–1136. PubMed PMC

Schmit J.D., Ghosh K., Dill K. What drives amyloid molecules to assemble into oligomers and fibrils? Biophys. J. 2011;100:450–458. PubMed PMC

Buell A.K., Galvagnion C., Dobson C.M. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl. Acad. Sci. USA. 2014;111:7671–7676. PubMed PMC

Kim H.J., Chatani E., Paik S.R. Seed-dependent accelerated fibrillation of α-synuclein induced by periodic ultrasonication treatment. J. Microbiol. Biotechnol. 2007;17:2027–2032. PubMed

Shvadchak V.V., Claessens M.M., Subramaniam V. Fibril breaking accelerates α-synuclein fibrillization. J. Phys. Chem. B. 2015;119:1912–1918. PubMed

Wördehoff M.M., Bannach O., Birkmann E. Single fibril growth kinetics of α-synuclein. J. Mol. Biol. 2015;427(6 Pt B):1428–1435. PubMed

So M., Yagi H., Goto Y. Ultrasonication-dependent acceleration of amyloid fibril formation. J. Mol. Biol. 2011;412:568–577. PubMed

Hansen C., Björklund T., Li J.Y. A novel α-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of α-synuclein-GFP. Neurobiol. Dis. 2013;56:145–155. PubMed

Bodhicharla R., Nagarajan A., de Pomerai D. Effects of α-synuclein overexpression in transgenic Caenorhabditis elegans strains. CNS Neurol. Disord. Drug Targets. 2012;11:965–975. PubMed PMC

Kakish J., Allen K.J., Lee J.S. Novel dimer compounds that bind α-synuclein can rescue cell growth in a yeast model overexpressing α-synuclein. A possible prevention strategy for Parkinson’s disease. ACS Chem. Neurosci. 2016;7:1671–1680. PubMed

Fernandes J.T., Chutna O., Outeiro T.F. A novel microfluidic cell co-culture platform for the study of the molecular mechanisms of Parkinson’s disease and other synucleinopathies. Front. Neurosci. 2016;10:511. PubMed PMC

Lee I.H., Kim H.Y., Paik S.R. Dequalinium-induced cell death of yeast expressing alpha-synuclein-GFP fusion protein. Neurochem. Res. 2008;33:1393–1400. PubMed

McLean P.J., Kawamata H., Hyman B.T. α-Synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience. 2001;104:901–912. PubMed

Rockenstein E., Schwach G., Masliah E. Lysosomal pathology associated with α-synuclein accumulation in transgenic models using an eGFP fusion protein. J. Neurosci. Res. 2005;80:247–259. PubMed

Keem J.O., Lee I.H., Chung B.H. Splitting and self-assembling of far-red fluorescent protein with an engineered β strand peptide: application for α-synuclein imaging in mammalian cells. Biomaterials. 2011;32:9051–9058. PubMed

van Ham T.J., Esposito A., Bertoncini C.W. Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of α-synuclein aggregation. J. Mol. Biol. 2010;395:627–642. PubMed

Prusiner S.B., Woerman A.L., Giles K. Evidence for α-synuclein prions causing multiple system atrophy in humans with Parkinsonism. Proc. Natl. Acad. Sci. USA. 2015;112:E5308–E5317. PubMed PMC

Anderson V.L., Webb W.W. Transmission electron microscopy characterization of fluorescently labelled amyloid β 1–40 and α-synuclein aggregates. BMC Biotechnol. 2011;11:125. PubMed PMC

Hoffmann C., Gaietta G., Lohse M.J. Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat. Protoc. 2010;5:1666–1677. PubMed PMC

Roberti M.J., Bertoncini C.W., Jovin T.M. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein. Nat. Methods. 2007;4:345–351. PubMed

Yap T.L., Pfefferkorn C.M., Lee J.C. Residue-specific fluorescent probes of α-synuclein: detection of early events at the N- and C-termini during fibril assembly. Biochemistry. 2011;50:1963–1965. PubMed PMC

Mučibabić M., Apetri M.M., Aartsma T.J. The effect of fluorescent labeling on α-synuclein fibril morphology. Biochim. Biophys. Acta. 2016;1864:1419–1427. PubMed

Roberti M.J., Fölling J., Jares-Erijman E.A. Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy. Biophys. J. 2012;102:1598–1607. PubMed PMC

Yushchenko D.A., Fauerbach J.A., Jovin T.M. Fluorescent ratiometric MFC probe sensitive to early stages of α-synuclein aggregation. J. Am. Chem. Soc. 2010;132:7860–7861. PubMed

Roberti M.J., Jovin T.M., Jares-Erijman E. Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells. PLoS One. 2011;6:e23338. PubMed PMC

Izawa Y., Tateno H., Kawata Y. Role of C-terminal negative charges and tyrosine residues in fibril formation of α-synuclein. Brain Behav. 2012;2:595–605. PubMed PMC

Murray I.V., Giasson B.I., Lee V.M. Role of α-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry. 2003;42:8530–8540. PubMed

Levitan K., Chereau D., Millhauser G.L. Conserved C-terminal charge exerts a profound influence on the aggregation rate of α-synuclein. J. Mol. Biol. 2011;411:329–333. PubMed PMC

Hoyer W., Cherny D., Jovin T.M. Impact of the acidic C-terminal region comprising amino acids 109–140 on α-synuclein aggregation in vitro. Biochemistry. 2004;43:16233–16242. PubMed

Antony T., Hoyer W., Subramaniam V. Cellular polyamines promote the aggregation of α-synuclein. J. Biol. Chem. 2003;278:3235–3240. PubMed

Biancalana M., Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. 2010;1804:1405–1412. PubMed PMC

Iyer A., Roeters S.J., Subramaniam V. The impact of N-terminal acetylation of α-synuclein on phospholipid membrane binding and fibril structure. J. Biol. Chem. 2016;291:21110–21122. PubMed PMC

Hoyer W., Antony T., Subramaniam V. Dependence of α-synuclein aggregate morphology on solution conditions. J. Mol. Biol. 2002;322:383–393. PubMed

Sidhu A., Segers-Nolten I., Subramaniam V. Solution conditions define morphological homogeneity of α-synuclein fibrils. Biochim. Biophys. Acta. 2014;1844:2127–2134. PubMed

Hoyer W., Cherny D., Jovin T.M. Rapid self-assembly of α-synuclein observed by in situ atomic force microscopy. J. Mol. Biol. 2004;340:127–139. PubMed

Zhang F., Lin X.J., Hu H.Y. Assembly of α-synuclein fibrils in nanoscale studied by peptide truncation and AFM. Biochem. Biophys. Res. Commun. 2008;368:388–394. PubMed

Dearborn A.D., Wall J.S., Steven A.C. α-Synuclein amyloid fibrils with two entwined, asymmetrically associated protofibrils. J. Biol. Chem. 2016;291:2310–2318. PubMed PMC

van Raaij M.E., Segers-Nolten I.M., Subramaniam V. Quantitative morphological analysis reveals ultrastructural diversity of amyloid fibrils from α-synuclein mutants. Biophys. J. 2006;91:L96–L98. PubMed PMC

Segers-Nolten I., van der Werf K., Subramaniam V. Quantitative characterization of protein nanostructures using atomic force microscopy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007;2007:6609–6612. PubMed

Sidhu A., Nolten I.S., Subramaniam V. Distinct mechanisms determine α-synuclein fibril morphology during growth and maturation. ACS Chem. Neurosci. 2016;8:538–547. PubMed

Esler W.P., Stimson E.R., Maggio J.E. Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry. 2000;39:6288–6295. PubMed

Collins S.R., Douglass A., Weissman J.S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2004;2:e321. PubMed PMC

Jain S., Udgaonkar J.B. Evidence for stepwise formation of amyloid fibrils by the mouse prion protein. J. Mol. Biol. 2008;382:1228–1241. PubMed

Gobbi M., Colombo L., Salmons M. Gerstmann-Sträussler-Scheinker disease amyloid protein polymerizes according to the “dock-and-lock” model. J. Biol. Chem. 2006;281:843–849. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...