Assessment of the antifungal activity of Lactobacillus and Pediococcus spp. for use as bioprotective cultures in dairy products
Language English Country Germany Media electronic
Document type Journal Article
PubMed
28965275
DOI
10.1007/s11274-017-2354-y
PII: 10.1007/s11274-017-2354-y
Knihovny.cz E-resources
- Keywords
- Antifungal, Bioprotection, Dairy product, Fungi, Lactobacilli, Pediococci,
- MeSH
- Antifungal Agents pharmacology MeSH
- Lactobacillus physiology MeSH
- Dairy Products microbiology MeSH
- Pediococcus physiology MeSH
- Penicillium growth & development MeSH
- Food Microbiology MeSH
- Probiotics MeSH
- Rhodotorula growth & development MeSH
- Yarrowia growth & development MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antifungal Agents MeSH
Fungi are commonly involved in dairy product spoilage and the use of bioprotective cultures can be a complementary approach to reduce food waste and economic losses. In this study, the antifungal activity of 89 Lactobacillus and 23 Pediococcus spp. isolates against three spoilage species, e.g., Yarrowia lipolytica, Rhodotorula mucilaginosa and Penicillium brevicompactum, was first evaluated in milk agar. None of the tested pediococci showed antifungal activity while 3, 23 and 43 lactobacilli isolates showed strong antifungal activity or total inhibition against Y. lipolytica, R. mucilaginosa and P. brevicompactum, respectively. Then, the three most promising strains, Lactobacillus paracasei SYR90, Lactobacillus plantarum OVI9 and Lactobacillus rhamnosus BIOIII28 at initial concentrations of 105 and 107 CFU/ml were tested as bioprotective cultures against the same fungal targets in a yogurt model during a 5-week storage period at 10 °C. While limited effects were observed at 105 CFU/ml inoculum level, L. paracasei SYR90 and L. rhamnosus BIOIII28 at 107 CFU/ml respectively retarded the growth of R. mucilaginosa and P. brevicompactum as compared to a control without selected cultures. In contrast, growth of Y. lipolytica was only slightly affected. In conclusion, these selected strains may be good candidates for bioprotection of fermented dairy products.
See more in PubMed
FEMS Microbiol Lett. 1998 Apr 1;161(1):97-106 PubMed
J Appl Microbiol. 2008 Mar;104(3):915-23 PubMed
Int J Food Microbiol. 2017 Jan 16;241:191-197 PubMed
Int J Food Microbiol. 2016 Apr 2;222:1-7 PubMed
FEMS Microbiol Lett. 2002 Sep 10;214(2):271-5 PubMed
Res Microbiol. 2010 Jul-Aug;161(6):480-7 PubMed
Int J Food Microbiol. 1999 Sep 15;50(1-2):131-49 PubMed
Appl Environ Microbiol. 2000 Jan;66(1):297-303 PubMed
Lett Appl Microbiol. 1999 Aug;29(2):90-2 PubMed
Int J Food Microbiol. 2012 Jul 2;157(2):130-41 PubMed
Nucleic Acids Res. 2014 Jan;42(Database issue):D613-6 PubMed
Lett Appl Microbiol. 2001 Nov;33(5):377-81 PubMed
J Appl Microbiol. 2011 Dec;111(6):1447-55 PubMed
Appl Microbiol Biotechnol. 2016 Feb;100(4):1701-11 PubMed
J Food Prot. 2008 Dec;71(12):2481-7 PubMed
Int J Food Microbiol. 2008 Dec 10;128(2):288-96 PubMed
J Appl Microbiol. 2012 Dec;113(6):1417-27 PubMed
Int J Food Microbiol. 2008 Oct 31;127(3):276-83 PubMed
Syst Appl Microbiol. 2004 Mar;27(2):229-37 PubMed
Curr Microbiol. 2011 Mar;62(3):1081-9 PubMed
FEMS Microbiol Lett. 2000 Jun 15;187(2):167-73 PubMed
Int J Food Microbiol. 2012 Apr 16;155(3):185-90 PubMed
Int J Food Microbiol. 2008 Sep 1;126(3):278-85 PubMed
Int J Food Microbiol. 2005 Nov 15;105(1):27-34 PubMed