Investigation of cosolvent application to enhance POPs' mass transfer in partitioning passive sampling in sediment

. 2017 Dec ; 24 (35) : 27334-27344. [epub] 20171002

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28971343

Grantová podpora
GACR 15-16512S Grantová Agentura České Republiky
LO1214 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 28971343
DOI 10.1007/s11356-017-0223-8
PII: 10.1007/s11356-017-0223-8
Knihovny.cz E-zdroje

The freely dissolved concentration of persistent organic pollutants (POPs) is one of the most important parameters for risk assessment in aquatic environments, due to its proportionality to the chemical activity. Chemical activity difference represents the driving force for a spontaneous contaminant transport, such as water-aquatic biota or water-sediment. Freely dissolved concentrations in sediment pore water can be estimated from the concentrations in a partition-based passive sampler equilibrated in suspensions of contaminated sediment. Equilibration in the sediment/passive sampler system is slow, since concentrations of most POPs in the water phase, which is the main route for mass transfer, are very low. Adding methanol to sediment in suspension increases the POPs' solubility and, consequently, the permeability in the water phase. The resulting higher aqueous concentrations enhance POPs mass transfer up to three times for investigated POPs (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides) and shorten equilibrium attainment to less than 6 weeks. The addition of methanol to the aqueous phase up to a molar fraction of 0.2 changed the POPs equilibrium distribution ratio between sediment and passive sampler by less than a factor of two. As a result, the pore water concentrations of POPs, calculated from their amounts accumulated in a passive sampler, are affected by methanol addition not more than by the same factor.

Zobrazit více v PubMed

J Pharm Sci. 1992 Apr;81(4):371-9 PubMed

Environ Sci Technol. 2013 Jan 2;47(1):510-7 PubMed

Environ Pollut. 2013 Jan;172:223-34 PubMed

Environ Sci Technol. 2003 Jan 15;37(2):268-74 PubMed

Environ Sci Technol. 1994 Jan 1;28(1):47-52 PubMed

Chemosphere. 2007 Jul;68(7):1344-51 PubMed

Environ Sci Technol. 2010 Sep 1;44(17):6789-94 PubMed

Environ Sci Technol. 2014 Oct 7;48(19):11352-9 PubMed

Environ Sci Technol. 2009 Sep 15;43(18):7047-54 PubMed

Sci Total Environ. 2012 Apr 15;423:125-31 PubMed

Environ Sci Technol. 2003 May 1;37(9):184A-191A PubMed

Environ Sci Technol. 2007 Sep 1;41(17 ):6148-55 PubMed

Environ Sci Technol. 2012 Oct 2;46(19):10682-9 PubMed

Environ Toxicol Chem. 2006 May;25(5):1239-45 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace