Spiroplasma Isolated From Third-Generation Laboratory Colony Ixodes persulcatus Ticks

. 2021 ; 8 () : 659786. [epub] 20210326

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33842580

Spiroplasma are vertically-transmitted endosymbionts of ticks and other arthropods. Field-collected Ixodes persulcatus have been reported to harbour Spiroplasma, but nothing is known about their persistence during laboratory colonisation of this tick species. We successfully isolated Spiroplasma from internal organs of 6/10 unfed adult ticks, belonging to the third generation of an I. persulcatus laboratory colony, into tick cell culture. We screened a further 51 adult male and female ticks from the same colony for presence of Spiroplasma by genus-specific PCR amplification of fragments of the 16S rRNA and rpoB genes; 100% of these ticks were infected and the 16S rRNA sequence showed 99.8% similarity to that of a previously-published Spiroplasma isolated from field-collected I. persulcatus. Our study shows that Spiroplasma endosymbionts persist at high prevalence in colonised I. persulcatus through at least three generations, and confirms the usefulness of tick cell lines for isolation and cultivation of this bacterium.

Zobrazit více v PubMed

Noda H, Munderloh UG, Kurtti TJ. Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Env Microbiol. (1997) 63:3926–32. 10.1128/AEM.63.10.3926-3932.1997 PubMed DOI PMC

Lo N, Beninati T, Sassera D, Bouman EAP, Santagati S, Gern L, et al. . Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. Environ Microbiol. (2006) 8:1280–7. 10.1111/j.1462-2920.2006.01024.x PubMed DOI

Duron O, Binetruy F, Noel V, Cremaschi J, McCoy KD, Arnathau C, et al. . Evolutionary changes in symbiont community structure in ticks. Molec Ecol. (2017) 26:2905–21. 10.1111/mec.14094 PubMed DOI

Binetruy F, Bailly X, Chevillon C, Martin OY, Bernasconi MV, Duron O. Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks Tick Borne Dis. (2019) 10:575–84. 10.1016/j.ttbdis.2019.02.001 PubMed DOI

Mediannikov O, Nguyen T, Bell-Sakyi L, Padmanabhan R, Fournier P, Raoult D. Genome sequence and description of Occidentia massiliensis gen. nov., sp. nov., a new member of the family Rickettsiaceae. Standards Genomic Sci. (2014) 9:9. 10.1186/1944-3277-9-9 PubMed DOI PMC

Kurtti TJ, Munderloh UG, Andreadis TG, Magnarelli LA, Mather TN. Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis. J Invert Pathol. (1996) 67:318–21. 10.1006/jipa.1996.0050 PubMed DOI

Tijsse-Klasen E, Braks M, Scholte E-J, Sprong H. Parasites of vectors - Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasites Vectors. (2011) 4:228. 10.1186/1756-3305-4-228 PubMed DOI PMC

Mediannikov O, Subramanian G, Sekeyova Z, Bell-Sakyi L, Raoult D. Isolation of Arsenophonus nasoniae from Ixodes ricinus ticks in Slovakia. Ticks Tick Borne Dis. (2012) 3:366–9. 10.1016/j.ttbdis.2012.10.016 PubMed DOI

Plantard O, Bouju-Albert A, Malard M-A, Hermouet A, Capron G, Verheyden H. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the Hymenoptera endoparasitoid Ixodiphagus hookeri. PLoS ONE. (2012) 7:e30692. 10.1371/journal.pone.0030692 PubMed DOI PMC

Thu MJ, Qiu Y, Kataoka-Nakamura C, Sugimoto C, Katakura K, Isoda N, et al. . Isolation of Rickettsia, Rickettsiella, and Spiroplasma from questing ticks in Japan using arthropod cells. Vector-Borne Zoonot Dis. (2019) 19:474–85. 10.1089/vbz.2018.2373 PubMed DOI

Simser JA, Palmer AT, Munderloh UG, Kurtti TJ. Isolation of a spotted fever group rickettsia, Rickettsia peacockii, in a Rocky Mountain wood tick, Dermacentor andersoni, cell line. Appl Env Microbiol. (2001) 67:546–52. 10.1128/AEM.67.2.546-552.2001 PubMed DOI PMC

Mattila JT, Burkhardt NY, Hutcheson HJ, Munderloh UG, Kurtti TJ. Isolation of cell lines and a rickettsial endosymbiont from the soft tick Carios capensis (Acari: Argasidae: Ornithodorinae). J Med Entomol. (2007) 44:1091–101. 10.1093/jmedent/44.6.1091 PubMed DOI

Alberdi MP, Nijhof AM, Jongejan F, Bell-Sakyi L. Tick cell culture isolation and growth of Rickettsia raoultii from Dutch Dermacentor reticulatus ticks. Ticks Tick Borne Dis. (2012) 3:349–54. 10.1016/j.ttbdis.2012.10.020 PubMed DOI PMC

Ferrari FAG, Goddard J, Moraru GM, Smith WEC, Varela-Stokes AS. Isolation of “Candidatus Rickettsia andeanae” (Rickettsiales: Rickettsiaceae) in embryonic cells of naturally infected Amblyomma maculatum (Ixodida: Ixodidae). J Med Entomol. (2013) 50:1118–25. 10.1603/ME13010 PubMed DOI

Kurtti TJ, Felsheim RF, Burkhardt NY, Oliver JD, Heu CC, Munderloh UG. Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis. Int J Syst Evol Microbiol. (2015) 65:965–70. 10.1099/ijs.0.000047 PubMed DOI PMC

Santibáñez S, Portillo A, Palomar AM, Bell-Sakyi L, Romero L, Oteo JA. Isolation and maintenance of Rickettsia raoultii in a Rhipicephalus sanguineus tick cell line. Microbes Infect. (2015) 17:866–9. 10.1016/j.micinf.2015.09.018 PubMed DOI

Niebylski ML, Peacock MG, Fischer ER, Porcella SF, Schwan TG. Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl Environ Microbiol. (1997) 63:3933–40. 10.1128/AEM.63.10.3933-3940.1997 PubMed DOI PMC

Yunker CE, Tully JG, Cory J. Arthropod cell lines in the isolation and propagation of tickborne spiroplasmas. Curr Microbiol. (1987) 15:45–50. 10.1007/BF01577213 DOI

Henning K, Greiner-Fischer S, Hotzel H, Ebsen M, Theegarten D. Isolation of a Spiroplasma sp. from an Ixodes tick. Int J Med Microbiol. (2006) 296:157–61. 10.1016/j.ijmm.2006.01.012 PubMed DOI

Bell-Sakyi L, Palomar AM, Kazimirova M. Isolation and propagation of a Spiroplasma sp. from Slovakian Ixodes ricinus ticks in Ixodes spp. cell lines. Ticks Tick Borne Dis. (2015) 6:601–6. 10.1016/j.ttbdis.2015.05.002 PubMed DOI PMC

Palomar AM, Premchand-Branker S, Alberdi P, Belova O, Moniuszko-Malinowska A, Kahl O, et al. . Isolation of known and potentially pathogenic tick-borne microorganisms from European ixodid ticks using tick cell lines. Ticks Tick Borne Dis. (2019) 10:628–38. 10.1016/j.ttbdis.2019.02.008 PubMed DOI PMC

Yamaguti N, Tipton VJ, Keegan HL, Toshioka S. Ticks of Japan, Korea, and the Ryukyu Islands. Brigham Young University Science Bulletin, Biological Series. (1971) 15:1. Available online at: https://scholarsarchive.byu.edu/byuscib/vol15/iss1/1 (accessed May 22, 2020).

Shpynov S. Ixodes persulcatus, a major vector of Alphaproteobacteria in Russia. Ticks Tick Borne Dis. (2012) 3:304–6. 10.1016/j.ttbdis.2012.10.029 PubMed DOI

Cerný J, Buyannemekh B, Needham T, Gankhuyag G, Dashzeveg Oyuntsetseg D. Hard ticks and tick-borne pathogens in Mongolia – a review. Ticks Tick Borne Dis. (2019) 10:101268. 10.1016/j.ttbdis.2019.101268 PubMed DOI

Jaenson GT, Wilhelmsson P. First records of tick-borne pathogens in populations of the taiga tick Ixodes persulcatus in Sweden. Parasites Vectors. (2019) 12:559. 10.1186/s13071-019-3813-0 PubMed DOI PMC

Mediannikov O, Ivanov LI, Nishikawa M, Saito R, Sidelnikov IN, Zdanovskaia NI, et al. . Microorganism “Montezuma” of the order Rickettsiales: the potential causative agent of tick-borne disease in the Far East of Russia. Zh Mikrobiol Epidemiol Immunobiol. (2004) 1:7–13. PubMed

Eremeeva ME, Oliveira A, Moriarity J, Robinson JB, Tokarevich NK, Antyukova LP, et al. . Detection and identification of bacterial agents in Ixodes persulcatus Schulze ticks from the North Western Region of Russia. Vector-Borne Zoonot Dis. (2007) 7:426–36. 10.1089/vbz.2007.0112 PubMed DOI

Mukhacheva TA, Kovalev SY. Bacteria of the family ‘Candidatus Midichloriaceae' in sympatric zones of Ixodes ticks: genetic evidence for vertical transmission. Microb Ecol. (2017) 74:185–93. 10.1007/s00248-017-0932-z PubMed DOI

Qiu Y, Nakao R, Ohnuma A, Kawamori F, Sugimoto C. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS ONE. (2014) 9:e103961. 10.1371/journal.pone.0103961 PubMed DOI PMC

Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia – an overview. Ticks Tick Borne Dis. (2011) 2:2–15. 10.1016/j.ttbdis.2010.10.007 PubMed DOI

Yi S, Jiang H, Cao W, Fu W, Ju W, Wang X. Prevalence of Candidatus Rickettsia tarasevichiae-like bacteria in ixodid ticks at 13 sites on the Chinese–Russian border. J Med Entomol. (2014) 51:1304–7. 10.1603/ME13189 PubMed DOI

Kurilshokov A, Livanona NN, Fomenko NV, Tupikin AE, Rar VA, Kabilov MR, et al. . Comparative metagenomic profiling of symbiotic bacterial communities associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus ticks. PLoS ONE. (2015) 10:e0131413. 10.1371/journal.pone.0131413 PubMed DOI PMC

Igolkina Y, Bondarenko E, Rar V, Epikhina T, Vysochina N, Pukhovskaya N, et al. . Genetic variability of Rickettsia spp. in Ixodes persulcatus ticks from continental and island areas of the Russian Far East. Ticks Tick Borne Dis. (2016) 7:1284–9. 10.1016/j.ttbdis.2016.06.005 PubMed DOI

Sormunen JJ, Penttinen R, Klemola T, Hänninen J, Vuorinen I, Laaksonen M, et al. . Tick-borne bacterial pathogens in southwestern Finland. Parasites Vectors. (2016) 9:168. 10.1186/s13071-016-1449-x PubMed DOI PMC

Livanova NN, Fomenko NV, Akimov IA, Ivanov MJ, Tikunova NV, Armstrong R, et al. . Dog survey in Russian veterinary hospitals: tick identification and molecular detection of tick-borne pathogens. Parasites Vectors. (2018) 11:591. 10.1186/s13071-018-3161-5 PubMed DOI PMC

Narankhajid M, Yeruult C, Gurbadam A, Battsetseg J, Aberle SW, Bayartogtokh B, et al. . Some aspects on tick species in Mongolia and their potential role in the transmission of equine piroplasms, Anaplasma phagocytophilum and Borrelia burgdorferi L. Parasitol Res. (2018) 117:3557–66. 10.1007/s00436-018-6053-x PubMed DOI

Rar V, Livanova N, Sabitova Y, Igolkina Y, Tkachev S, Tikunov A, et al. . Ixodes persulcatus/pavlovskyi natural hybrids in Siberia: occurrence in sympatric areas and infection by a wide range of tick-transmitted agents. Ticks Tick Borne Dis. (2019) 10:101254. 10.1016/j.ttbdis.2019.05.020 PubMed DOI

Kholodilov IS, Litov AG, Klimentov AS, Belova OA, Polienko AE, Nikitin NA. Isolation and characterization of Alongshan virus in Russia. Viruses. (2020) 12:362. 10.3390/v12040362 PubMed DOI PMC

Popov VL, Korenberg EI, Nefedova VV, Han VC, Wen JW, Kovalevskii YV, et al. . Ultrastructural evidence of the ehrlichial developmental cycle in naturally infected Ixodes persulcatus ticks in the course of coinfection with Rickettsia, Borrelia, and a flavivirus. Vector-Borne Zoonot Dis. (2007) 7:699–716. 10.1089/vbz.2007.0148 PubMed DOI

Aivelo T, Norberg A, Tschirren B. Bacterial microbiota composition of Ixodes ricinus ticks: the role of environmental variation, tick characteristics and microbial interactions. Peer J. (2019) 7:e8217. 10.7717/peerj.8217 PubMed DOI PMC

Cafiso A, Sassera D, Romeo C, Serra V, Hervet C, Bandi C, et al. . Midichloria mitochondrii, endosymbiont of Ixodes ricinus: evidence for the transmission to the vertebrate host during the tick blood meal. Ticks Tick Borne Dis. (2019) 10:5–12. 10.1016/j.ttbdis.2018.08.008 PubMed DOI

Guizzo MG, Neupane S, Kucera M, Perner J, Frantová H, da Silva Vaz I, et al. . Poor unstable midgut microbiome of hard ticks contrasts with abundant and stable monospecific microbiome in ovaries. Front Cell Infect Microbiol. (2020) 8:211. 10.3389/fcimb.2020.00211 PubMed DOI PMC

Morimoto S, Kurtti TJ, Noda H. In vitro cultivation and antibiotic susceptibility of a Cytophaga- like intracellular symbiote isolated from the tick Ixodes scapularis. Curr Microbiol. (2006) 52:324–9. 10.1007/s00284-005-0349-7 PubMed DOI

Kurtti TJ, Munderloh UG, Ahlstrand GG, Johnson RC. Borrelia burgdorferi in tick cell culture: growth and cellular adherence. J Med Entomol. (1988) 25:256–61. 10.1093/jmedent/25.4.256 PubMed DOI

Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG. Rickettsia monacensis sp. nov., a spotted fever group rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Env Microbiol. (2002) 68:4559–66. 10.1128/AEM.68.9.4559-4566.2002 PubMed DOI PMC

Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol. (1994) 80:533–43. 10.2307/3283188 PubMed DOI

Bell-Sakyi L. Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J Comp Pathol. (2004) 130:285–93. 10.1016/j.jcpa.2003.12.002 PubMed DOI

Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, et al. . Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J Clin Microbiol. (1999) 37:2518–24. 10.1128/JCM.37.8.2518-2524.1999 PubMed DOI PMC

Fukatsu T, Nikoh N. Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl Environ Microbiol. (2000) 66:643–50. 10.1128/AEM.66.2.643-650.2000 PubMed DOI PMC

Haselkorn TS, Markow TA, Moran NA. Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Mol Ecol. (2009) 18:1294–305. 10.1111/j.1365-294X.2009.04085.x PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. (2018) 35:1547–9. 10.1093/molbev/msy096 PubMed DOI PMC

Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. (1980) 16:111–20. 10.1007/BF01731581 PubMed DOI

Schwarz G. Estimating the dimension of a model. Ann Stat. (1978) 6:461–4. 10.1214/aos/1176344136 DOI

Black WC, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA. (1994) 91:10034–8. 10.1073/pnas.91.21.10034 PubMed DOI PMC

Duron O, Noel V, McCoy KD, Bonazzi M, Sidi-Boumedine K, Morel O, et al. . The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Path. (2015) 11:e1004892. 10.1371/journal.ppat.1004892 PubMed DOI PMC

Olivieri E, Epis S, Castelli M, Boccazzi IV, Romeo C, Desiro A, et al. . Tissue tropism and metabolic pathways of Midichloria mitochondrii suggest tissue-specific functions in the symbiosis with Ixodes ricinus. Ticks Tick Borne Dis. (2019) 10:1070–7. 10.1016/j.ttbdis.2019.05.019 PubMed DOI

Hornok S, Meli ML, Perreten A, Farkas R, Willi B, Beugnet F, et al. ., Hofmann-Lehmann R. Molecular investigation of hard ticks (Acari: Ixodidae) and fleas (Siphonaptera: Pulicidae) as potential vectors of rickettsial and mycoplasmal agents. Vet Microbiol. (2010) 140:98–104. 10.1016/j.vetmic.2009.07.013 PubMed DOI

Klubal R, Kopecky J, Nesvorna M, Sparagano OAE, Thomayerova J, Hubert J. Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia. Exp Appl Acarol. (2016) 68:127–37. 10.1007/s10493-015-9988-y PubMed DOI

Krawczyk AI, van Duijvendijk GLA, Swart A, Heylen D, Jaarsma RI, Jacobs FHH, et al. . Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasites Vectors. (2020) 13:34. 10.1186/s13071-020-3902-0 PubMed DOI PMC

Van Oosten AR, Duron O, Heylen DJA. Sex ratios of the tick Ixodes arboricola are strongly female-biased, but there are no indications of sex-distorting bacteria. Ticks Tick Borne Dis. (2018) 9:307–13. 10.1016/j.ttbdis.2017.11.004 PubMed DOI

Tully JG, Rose DL, Yunker CE, Carle P, Bove JM, Williamson DL, et al. . Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks collected in Oregon. Int J Syst Bact. (1995) 45:23–8. 10.1099/00207713-45-1-23 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...