On the causes and consequences of the uncoupler-like effects of quercetin and dehydrosilybin in H9c2 cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28977033
PubMed Central
PMC5627936
DOI
10.1371/journal.pone.0185691
PII: PONE-D-16-49057
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- digitonin farmakologie MeSH
- fluorescenční mikroskopie MeSH
- konfokální mikroskopie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální ADP/ATP-translokasy metabolismus MeSH
- quercetin farmakologie MeSH
- silymarin farmakologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dehydrosilybin MeSH Prohlížeč
- digitonin MeSH
- mitochondriální ADP/ATP-translokasy MeSH
- quercetin MeSH
- silymarin MeSH
- vápník MeSH
Quercetin and dehydrosilybin are polyphenols which are known to behave like uncouplers of respiration in isolated mitochondria. Here we investigated whether the effect is conserved in whole cells. Following short term incubation, neither compound uncouples mitochondrial respiration in whole H9c2 cells below 50μM. However, following hypoxia, or long term incubation, leak (state IV with oligomycin) oxygen consumption is increased by quercetin. Both compounds partially protected complex I respiration, but not complex II in H9c2 cells following hypoxia. In a permeabilised H9c2 cell model, the increase in leak respiration caused by quercetin is lowered by increased [ADP] and is increased by adenine nucleotide transporter inhibitor, atractyloside, but not bongkrekic acid. Both quercetin and dehydrosilybin dissipate mitochondrial membrane potential in whole cells. In the case of quercetin, the effect is potentiated post hypoxia. Genetically encoded Ca++ sensors, targeted to the mitochondria, enabled the use of fluorescence microscopy to show that quercetin decreased mitochondrial [Ca++] while dehydrosilybin did not. Likewise, quercetin decreases accumulation of [Ca++] in mitochondria following hypoxia. Fluorescent probes were used to show that both compounds decrease plasma membrane potential and increase cytosolic [Ca++]. We conclude that the uncoupler-like effects of these polyphenols are attenuated in whole cells compared to isolated mitochondria, but downstream effects are nevertheless apparent. Results suggest that the effect of quercetin observed in whole and permeabilised cells may originate in the mitochondria, while the mechanism of action of cardioprotection by dehydrosilybin may be less dependent on mitochondrial uncoupling than originally thought. Rather, protective effects may originate due to interactions at the plasma membrane.
Zobrazit více v PubMed
Barteková M, Carnická S, Pancza D, Ondrejcáková M, Breier A, Ravingerová T. Acute treatment with polyphenol quercetin improves postischemic recovery of isolated perfused rat hearts after global ischemia. Can J Physiol Pharmacol. 2010. April; 88(4):465–71. doi: 10.1139/y10-025 PubMed DOI
Tang L, Peng Y, Xu T, Yi X, Liu Y, Luo Y, et al. The effects of quercetin protect cardiomyocytes from A/R injury is related to its capability to increasing expression and activity of PKCε protein. Mol Cell Biochem. 2013. October 1; 382(1–2):145–52. doi: 10.1007/s11010-013-1729-0 PubMed DOI
Akhlaghi M, Bandy B. Preconditioning and Acute Effects of Flavonoids in Protecting Cardiomyocytes from Oxidative Cell Death. Oxid Med Cell Longev. 2012. July 5 vol. 2012, 2012:782321 doi: 10.1155/2012/782321 PubMed DOI PMC
Inal M, Altinişik M, Bilgin MD. The effect of quercetin on renal ischemia and reperfusion injury in the rat. Cell Biochem Funct. 2002; 20(4):291–6. doi: 10.1002/cbf.953 PubMed DOI
Cho J-Y, Kim I-S, Jang Y-H, Kim A-R, Lee S-R. Protective effect of quercetin, a natural flavonoid against neuronal damage after transient global cerebral ischemia. Neurosci Lett. 2006. September 1; 404(3):330–5. doi: 10.1016/j.neulet.2006.06.010 PubMed DOI
Blasina F, Vaamonde L, Silvera F, Tedesco AC, Dajas F. Intravenous nanosomes of quercetin improve brain function and hemodynamic instability after severe hypoxia in newborn piglets. Neurochem Int. 2015. October; 89:149–56. doi: 10.1016/j.neuint.2015.08.007 PubMed DOI
Gabrielová E., Křen V., Jabŭrek M. & Modrianskỳ M. Silymarin component 2, 3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol Res. 2015;64(1):79–91. PubMed
Gabrielova E, Vostalova J, Kren V, Gazak R, Jaburek M, Modriansky M. Cardioprotective activity of dehydrosilybin is linked to its uncoupler-like behavior. BBA—Bioenergetics. 2010. July;1797, Supplement:87.
Modrianský M, Gabrielová E. Uncouple my heart: the benefits of inefficiency. J Bioenerg Biomembr. 2009. April 1;41(2):133–6. doi: 10.1007/s10863-009-9212-z PubMed DOI
Lu X, Kwong JQ, Molkentin JD, Bers DM. Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. Circulation Research. 2016. March 4;118(5):834–41. doi: 10.1161/CIRCRESAHA.115.308093 PubMed DOI PMC
Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res. 2006. November 1; 72(2):313–21. doi: 10.1016/j.cardiores.2006.07.019 PubMed DOI
Brennan JP, Berry RG, Baghai M, Duchen MR, Shattock MJ. FCCP is cardioprotective at concentrations that cause mitochondrial oxidation without detectable depolarisation. Cardiovasc Res. 2006. November 1; 72(2):322–30. doi: 10.1016/j.cardiores.2006.08.006 PubMed DOI
To M-S, Aromataris EC, Castro J, Roberts ML, Barritt GJ, Rychkov GY. Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca2+ current in liver cells. Arch Biochem Biophys. 2010. March 15; 495(2):152–8. doi: 10.1016/j.abb.2010.01.004 PubMed DOI
Gurney AM, Drummond RM, Fay FS. Calcium signalling in sarcoplasmic reticulum, cytoplasm and mitochondria during activation of rabbit aorta myocytes. Cell Calcium. 2000. June; 27(6):339–51. doi: 10.1054/ceca.2000.0124 PubMed DOI
Miyawaki H, Ashraf M. Isoproterenol mimics calcium preconditioning-induced protection against ischemia. Am J Physiol. 1997. February; 272(2 Pt 2):H927–36. PubMed
Ortega R, García N. The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nucleotide translocase. J Bioenerg Biomembr. 2009. February 1; 41(1):41–7. doi: 10.1007/s10863-009-9198-6 PubMed DOI
Gabrielová E, Jabůrek M, Gažák R, Vostálová J, Ježek J, Křen V, et al. Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism. J Bioenerg Biomembr. 2010. December 14; 42(6):499–509. doi: 10.1007/s10863-010-9319-2 PubMed DOI
Gabrielová E, Zholobenko AV, Bartošíková L, Nečas J, Modriansky M. Silymarin Constituent 2,3-Dehydrosilybin Triggers Reserpine-Sensitive Positive Inotropic Effect in Perfused Rat Heart. PLoS ONE. 2015. September 29; 10(9):e0139208 doi: 10.1371/journal.pone.0139208 PubMed DOI PMC
Gažák R, Trouillas P, Biedermann D, Fuksová K, Marhol P, Kuzma M, et al. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013. January 23; 54(4):315–7.
Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, Pieribone VA. Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe. Neuron. 2012. September; 75(5):779–85. doi: 10.1016/j.neuron.2012.06.040 PubMed DOI PMC
Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun. 2014. June 13; 5. PubMed PMC
Wu J, Liu L, Matsuda T, Zhao Y, Rebane A, Drobizhev M, et al. Improved Orange and Red Ca 2+ Indicators and Photophysical Considerations for Optogenetic Applications. ACS Chem Neurosci. 2013. June 19; 4(6):963–72. doi: 10.1021/cn400012b PubMed DOI PMC
Jaburek et al. (2014) Dehydrosilybin and Quercetin Interact with the Mitochondrial Adenine Nucleotide Translocase to Induce a Weak Acid—Mediated H+ Conductance, Free Radic Biol Med 76: S82
Jagadeeswaran R, Thirunavukkarasu C, Gunasekaran P, Ramamurty N, Sakthisekaran D. In vitro studies on the selective cytotoxic effect of crocetin and quercetin. Fitoterapia. 2000, August 1;71(4):395–9. PubMed
Agullo G, Gamet L, Besson C, Demigné C, Rémésy C. Quercetin exerts a preferential cytotoxic effect on active dividing colon carcinoma HT29 and Caco-2 cells. Cancer Lett. 1994. November 25;87(1):55–63. PubMed
Lang DR, Racker E. Effects of quercetin and F1 inhibitor on mitochondrial ATPase and energy-linked reactions in submitochondrial particles. BBA-Bioenergetics. 1974. February 22;333(2):180–6. PubMed
Zheng J, Ramirez VD. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Brit J Pharm. 2000. July 1;130(5):1115–23. PubMed PMC
Khoo NKH, White CR, Pozzo-Miller L, Zhou F, Constance C, Inoue T, et al. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radical Bio Med. 2010. August 1; 49(3):339–47. PubMed PMC
Nadtochiy SM, Baker PRS, Freeman BA, Brookes PS. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc Res. 2009. May 1;82(2):333–40. doi: 10.1093/cvr/cvn323 PubMed DOI PMC
Nadtochiy SM, Zhu Q, Urciuoli W, Rafikov R, Black SM, Brookes PS. Nitroalkenes Confer Acute Cardioprotection via Adenine Nucleotide Translocase 1. J Biol Chem. 2012. January 27;287(5):3573–80. doi: 10.1074/jbc.M111.298406 PubMed DOI PMC
Dufour C, Dangles O. Flavonoid–serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim Biophys Acta. 2005. January 18;1721(1–3):164–73. doi: 10.1016/j.bbagen.2004.10.013 PubMed DOI
Zsila F, Bikádi Z, Simonyi M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem Pharmacol. 2003. February 1;65(3):447–56. PubMed
Terao J, Mukai R. Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Arch Biochem Biophys. 2014. October 1;559:12–6. doi: 10.1016/j.abb.2014.04.002 PubMed DOI
Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, et al. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem. 2010. May;21(5):397–404. doi: 10.1016/j.jnutbio.2009.01.014 PubMed DOI
Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med. 2004. April 1;36(7):829–37. doi: 10.1016/j.freeradbiomed.2004.01.002 PubMed DOI
Marhol P, Bednář P, Kolářová P, Večeřa R, Ulrichová J, Tesařová E, et al. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J Funct Foods. 2015. April;14:570–80.
Ulrichova J, Papouskova B, Zatloukalova M, Vacek J, Biedermann D, Křen V, et al. Biotransformation of silymarin flavonolignans in human hepatocytes. J Int Soc Antioxid Nutri Heal. 2016. May 13;3(4).
Day AJ, Bao Y, Morgan MRA, Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic Biol Med. 2000. December 15;29(12):1234–43. PubMed
Silva BA, Oliveira PJ, Cristóvão A, Dias ACP, Malva JO. Biapigenin Modulates the Activity of the Adenine Nucleotide Translocator in Isolated Rat Brain Mitochondria. Neurotox Res. 2009. July 14;17(1):75–90. doi: 10.1007/s12640-009-9082-5 PubMed DOI