Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay

. 2017 ; 14 () : 32. [epub] 20171003

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29026368

BACKGROUND: Systemic lupus erythematosus (SLE) is a remarkably heterogeneous autoimmune disease. Despite tremendous efforts, our knowledge of serum protein patterns in severe SLE phenotypes is still limited. We investigated the serum protein pattern of SLE, with special emphasis on irreversible organ damage and active lupus nephritis (LN) as assessed by renal Systemic Lupus Erythematosus Disease Activity Index. METHODS: We used proximity extension immunoassay (PEA, Proseek Multiplex, Olink) to assess the serum levels of ninety-two inflammation-related proteins in Czech patients with SLE (n = 75) and age-matched healthy control subjects (n = 23). Subgroup analysis was carried out on the basis of organ damage (with/without, 42/33) and biopsy-proven LN (with/without, 27/48; active LN, n = 13; inactive LN, n = 14). RESULTS: Of thirty deregulated proteins between SLE and the healthy controls (Pcorr < 0.05), the top upregulated proteins in SLE were sirtuin 2, interleukin 18 (IL18), and caspase 8 (Pcorr < 0.0006). Of these, sirtuin 2 and caspase 8 had not yet been reported with SLE. Elevated levels of IL8, CCL2/MCP1, CCL11, and MMP10 (Pcorr < 0.05) were detected in patients with organ damage for which the serum levels of CCL11 and MMP10 were particularly informative in organ damage prediction. Comparing patients based on LN, elevated levels of CSF1, sIL15RA, sCD40, sCX3CL1, caspase 8, sIL18R1, bNGF, and GDNF (Pcorr < 0.05) were detected in active LN. Except GDNF, all LN-associated markers showed usefulness in prediction of active renal disease. CONCLUSIONS: This highly sensitive PEA analysis identified the serum pattern of SLE, organ damage, and active LN, with many novel candidate proteins detected. Their exact role and suitability as biomarkers in SLE deserve further investigation.

Zobrazit více v PubMed

Gladman DD, Goldsmith CH, Urowitz MB, Bacon P, Fortin P, Ginzler E, et al. The Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) damage index for systemic lupus erythematosus international comparison. J Rheumatol. 2000;27:373–376. PubMed

Nossent J, Cikes N, Kiss E, Marchesoni A, Nassonova V, Mosca M, et al. Current causes of death in systemic lupus erythematosus in Europe, 2000–2004: relation to disease activity and damage accrual. Lupus. 2007;16:309–317. doi: 10.1177/0961203307077987. PubMed DOI

Chambers SA, Allen E, Rahman A, Isenberg D. Damage and mortality in a group of British patients with systemic lupus erythematosus followed up for over 10 years. Rheumatology (Oxford) 2009;48:673–675. doi: 10.1093/rheumatology/kep062. PubMed DOI

Mok CC, Ho CT, Wong RW, Lau CS. Damage accrual in southern Chinese patients with systemic lupus erythematosus. J Rheumatol. 2003;30:1513–1519. PubMed

Danila MI, Pons-Estel GJ, Zhang J, Vilá LM, Reveille JD, Alarcón GS. Renal damage is the most important predictor of mortality within the damage index: data from LUMINA LXIV, a multiethnic US cohort. Rheumatology (Oxford) 2009;48:542–545. doi: 10.1093/rheumatology/kep012. PubMed DOI PMC

Doria A, Gatto M, Zen M, Iaccarino L, Punzi L. Optimizing outcome in SLE: treating-to-target and definition of treatment goals. Autoimmun Rev. 2014;13:770–777. doi: 10.1016/j.autrev.2014.01.055. PubMed DOI

Cameron JS. Lupus nephritis. J Am Soc Nephrol. 1999;10:413–424. PubMed

Misra R, Gupta R. Biomarkers in lupus nephritis. Int J Rheum Dis. 2015;18:219–232. doi: 10.1111/1756-185X.12602. PubMed DOI

Balow JE. Clinical presentation and monitoring of lupus nephritis. Lupus. 2005;14:25–30. doi: 10.1191/0961203305lu2055oa. PubMed DOI

Enghard P, Riemekasten G. Immunology and the diagnosis of lupus nephritis. Lupus. 2009;18:287–290. doi: 10.1177/0961203308099632. PubMed DOI

Susianti H, Iriane VM, Dharmanata S, Handono K, Widijanti A, Gunawan A, et al. Analysis of urinary TGF-b1, MCP-1, NGAL, and IL-17 as biomarkers for lupus nephritis. Pathophysiology. 2015;22:65–71. doi: 10.1016/j.pathophys.2014.12.003. PubMed DOI

Kulkarni O, Anders HJ. Chemokines in lupus nephritis. Front Biosci. 2008;13:3312–3320. doi: 10.2741/2927. PubMed DOI

López P, Rodríguez-Carrio J, Caminal-Montero L, Mozo L, Suárez A. A pathogenic IFNα, BLyS and IL-17 axis in Systemic Lupus Erythematosus patients. Sci Rep. 2016;6:20651. doi: 10.1038/srep20651. PubMed DOI PMC

Schwartz N, Rubinstein T, Burkly LC, Collins CE, Blanco I, Su L, et al. Urinary TWEAK as a biomarker of lupus nephritis: a multicenter cohort study. Arthritis Res Ther. 2009;11:R143. doi: 10.1186/ar2816. PubMed DOI PMC

Ding H, Kharboutli M, Saxena R, Wu T. Insulin-like growth factor binding protein-2 as a novel biomarker for disease activity and renal pathology changes in lupus nephritis. Clin Exp Immunol. 2016;184:11–18. doi: 10.1111/cei.12743. PubMed DOI PMC

Abdallah E, El-Shishtawy S, Sherif N, Abdelwahab MA. Diagnostic performance of urinary osteoprotegrin as a novel biomarker for early detection of lupus nephritis activity. Life Sci J. 2015;12:75–81.

Li Y, Fang X, Li QZ. Biomarker profiling for lupus nephritis. Genomics Proteomics Bioinform. 2013;11:158–165. doi: 10.1016/j.gpb.2013.05.003. PubMed DOI PMC

Benjachat T, Tongyoo P, Tantivitayakul P, Somparn P, Hirankarn N, Prom-On S, et al. Biomarkers for refractory Lupus nephritis: a microarray study of kidney tissue. Int J Mol Sci. 2015;16:14276–14290. doi: 10.3390/ijms160614276. PubMed DOI PMC

Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. doi: 10.1002/art.1780400928. PubMed DOI

Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. Arthritis Rheum. 1992;35:630–640. doi: 10.1002/art.1780350606. PubMed DOI

The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42:599–608. PubMed

Gillian JN, Sontheimer RD. Skin manifestations of SLE. Clin Rheum Dis. 1981;8:207–218. PubMed

Miakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS) J Thromb Haemost. 2006;4:295–306. doi: 10.1111/j.1538-7836.2006.01753.x. PubMed DOI

Singh S, Wu T, Xie C, Vanarsa K, Han J, Mahajan T, et al. Urine VCAM-1 as a marker of renal pathology activity index in lupus nephritis. Arthritis Res Ther. 2012;14:R164. doi: 10.1186/ar3912. PubMed DOI PMC

Xuejing Z, Jiazhen T, Jun L, Xiangqing X, Shuguang Y, Fuyou L. Urinary TWEAK level as a marker of lupus nephritis activity in 46 cases. J Biomed Biotechnol. 2012;2012:359647. doi: 10.1155/2012/359647. PubMed DOI PMC

Assarsson E, Lundberg M, Holmquist G, Björkesten J, Thorsen SB, Ekman D, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE. 2014;9:e95192. doi: 10.1371/journal.pone.0095192. PubMed DOI PMC

Schneiderova P, Pika T, Gajdos P, Fillerova R, Kromer P, Kudelka M, et al. Serum protein fingerprinting by PEA immunoassay coupled with a pattern-recognition algorithms distinguishes MGUS and multiple myeloma. Oncotarget. 2016 doi:10.18632/oncotarget.11242. [Epub ahead of print]. PubMed PMC

Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003;100:2610–2615. doi: 10.1073/pnas.0337679100. PubMed DOI PMC

Feng X, Huang J, Liu Y, Xiao L, Wang D, Hua B, et al. Identification of interferon-inducible genes as diagnostic biomarker for systemic lupus erythematosus. Clin Rheumatol. 2015;34:71–79. doi: 10.1007/s10067-014-2799-4. PubMed DOI

Gröndal G, Gunnarsson I, Rönnelid J, Rogberg S, Klareskog L, Lundberg I. Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol. 2000;18:565–570. PubMed

Favilli F, Anzilotti C, Martinelli L, Quattroni P, De Martino S, Pratesi F, et al. IL-18 activity in systemic lupus erythematosus. Ann N Y Acad Sci. 2009;1173:301–309. doi: 10.1111/j.1749-6632.2009.04742.x. PubMed DOI

Yajima N, Kasama T, Isozaki T, Odai T, Matsunawa M, Negishi M, et al. Elevated levels of soluble fractalkine in active systemic lupus erythematosus: potential involvement in neuropsychiatric manifestations. Arthritis Rheum. 2005;52:1670–1675. doi: 10.1002/art.21042. PubMed DOI

Hrycek E, Franek A, Błaszczak E, Dworak J, Hrycek A. Serum levels of selected chemokines in systemic lupus erythematosus patients. Rheumatol Int. 2013;33:2423–2427. doi: 10.1007/s00296-012-2393-5. PubMed DOI

Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 2006;3:e491. doi: 10.1371/journal.pmed.0030491. PubMed DOI PMC

Masi L, Cavalli L, Falcini F, Franceschelli F, Leoncini G, Fossi C, et al. P8-measurement of fibroblast growth factor-23 (FGF23) in the serum of patients affected by juvenile systemic lupus erythematosus: a possible marker of kidney damage. Clin Cases Miner Bone Metab. 2010;7:214.

Lee AS, Jung YJ, Kim D, Nguyen-Thanh T, Kang KP, Lee S, et al. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages. Biochem Biophys Res Commun. 2014;450:1363–1369. doi: 10.1016/j.bbrc.2014.06.135. PubMed DOI

Wang X, Buechler NL, Martin A, Wells J, Yoza B, McCall CE, et al. Sirtuin-2 regulates sepsis inflammation in ob/ob mice. PLoS ONE. 2016;11:e0160431. doi: 10.1371/journal.pone.0160431. PubMed DOI PMC

Lemmers B, Salmena L, Bidère N, Su H, Matysiak-Zablocki E, Murakami K, et al. Essential role for caspase-8 in Toll-like receptors and NF-κB signaling. J Biol Chem. 2007;282:7416–7423. doi: 10.1074/jbc.M606721200. PubMed DOI

Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192:1835–1846. doi: 10.4049/jimmunol.1302839. PubMed DOI PMC

Lalor SJ, Dungan LS, Sutton CE, Basdeo SA, Fletcher JM, Mills KH. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol. 2011;186:5738–5748. doi: 10.4049/jimmunol.1003597. PubMed DOI

Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, et al. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc Natl Acad Sci USA. 2014;111:11181–11186. doi: 10.1073/pnas.1402819111. PubMed DOI PMC

Sahebari M, Rezaieyazdi Z, Nakhjavani MJ, Hatef M, Mahmoudi M, Akhlaghi S. Correlation between serum concentrations of soluble Fas (CD95/Apo-1) and IL-18 in patients with systemic lupus erythematosus. Rheumatol Int. 2012;32:601–606. doi: 10.1007/s00296-010-1633-9. PubMed DOI

Mohsen MA, Abdel Karim SA, Abbas TM, Amin M. Serum interleukin-18 levels in patients with systemic lupus erythematosus: relation with disease activity and lupus nephritis. Egypt Rheumatol. 2013;35:45–51. doi: 10.1016/j.ejr.2012.09.005. DOI

Calvani N, Richards HB, Tucci M, Pannarale G, Silvestris F. Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis. Clin Exp Immunol. 2004;138:171–178. doi: 10.1111/j.1365-2249.2004.02588.x. PubMed DOI PMC

Ebmeier CC, Anderson RJ. Human thyroid phenol sulfotransferase enzymes 1A1 and 1A3: activities in normal and diseased thyroid glands, and inhibition by thyroid hormones and phytoestrogens. J Clin Endocrinol Metab. 2004;89:5597–5605. doi: 10.1210/jc.2003-031939. PubMed DOI

Choe JY, Kim SK. Serum TWEAK as a biomarker for disease activity of systemic lupus erythematosus. Inflamm Res. 2016;65:479–488. doi: 10.1007/s00011-016-0930-5. PubMed DOI

Al-Janadi M, Al-Balla S, Al-Dalaan A, Raziuddin S. Cytokine profile in systemic lupus erythematosus, rheumatoid arthritis and other rheumatic diseases. J Clin Immunol. 1993;13:58–67. doi: 10.1007/BF00920636. PubMed DOI

Mangieri D, Corradi D, Martorana D, Malerba G, Palmisano A, Libri I, et al. Eotaxin/CCL11 in idiopathic retroperitoneal fibrosis. Nephrol Dial Transpl. 2012;27:3875–3884. doi: 10.1093/ndt/gfs408. PubMed DOI

Tacke F, Trautwein C, Yagmur E, Hellerbrand C, Wiest R, Brenner DA, et al. Up-regulated eotaxin plasma levels in chronic liver disease patients indicate hepatic inflammation, advanced fibrosis and adverse clinical course. J Gastroenterol Hepatol. 2007;22:1256–1264. doi: 10.1111/j.1440-1746.2006.04621.x. PubMed DOI

Huaux F, Gharaee-Kermani M, Liu T, Morel V, McGarry B, Ullenbruch M, et al. Role of Eotaxin-1 (CCL11) and CC chemokine receptor 3 (CCR3) in bleomycin-induced lung injury and fibrosis. Am J Pathol. 2005;167:1485–1496. doi: 10.1016/S0002-9440(10)61235-7. PubMed DOI PMC

Diny NL, Hou X, Barin JG, Chen G, Talor MV, Schaub J, et al. Macrophages and cardiac fibroblasts are the main producers of eotaxins and regulate eosinophil trafficking to the heart. Eur J Immunol. 2016; doi: 10.1002/eji.201646557. [Epub ahead of print]. PubMed PMC

Friese RS, Rao F, Khandrika S, Thomas B, Ziegler MG, Schmid-Schönbein GW, et al. Matrix metalloproteinases: discrete elevations in essential hypertension and hypertensive end-stage renal disease. Clin Exp Hypertens. 2009;31:521–533. doi: 10.3109/10641960802668730. PubMed DOI PMC

Barksby HE, Milner JM, Patterson AM, Peake NJ, Hui W, Robson T, et al. Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis. Arthritis Rheum. 2006;54:3244–3253. doi: 10.1002/art.22167. PubMed DOI

Wu T, Ding H, Han J, Arriens C, Wei C, Han W, et al. Antibody-array-based proteomic screening of serum markers in systemic lupus erythematosus: a discovery study. J Proteome Res. 2016;15:2102–2114. doi: 10.1021/acs.jproteome.5b00905. PubMed DOI PMC

Wang H, Bagavant H, Deshmukh U. Glomerular transcriptional profiles reveal the candidate biomarkers diagnostic for the progression of lupus nephritis from acute to chronic stages. Arthritis Rheum. 2008;58:S317.

Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR. Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J Exp Med. 1999;190:1813–1824. doi: 10.1084/jem.190.12.1813. PubMed DOI PMC

Chan RW, Lai FM, Li EK, Tam L, Chow K, Lai K, et al. Intrarenal cytokine gene expression in lupus nephritis. Ann Rheum Dis. 2007;66:886–892. doi: 10.1136/ard.2006.063123. PubMed DOI PMC

Menke J, Amann K, Cavagna L, Blettner M, Weinmann A, Schwarting A, et al. Colony-stimulating factor-1: a potential biomarker for lupus nephritis. J Am Soc Nephrol. 2015;26:379–389. doi: 10.1681/ASN.2013121356. PubMed DOI PMC

Menke J, Rabacal WA, Byrne KT, Iwata Y, Schwartz MM, Stanley ER, et al. Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J Am Soc Nephrol. 2009;20:2581–2592. doi: 10.1681/ASN.2009050499. PubMed DOI PMC

Baranda L, de la Fuente H, Layseca-Espinosa E, Portales-Perez D, Nino-Moreno P, Valencia-Pacheco G, et al. IL-15 and IL-15R in leucocytes from patients with systemic lupus erythematosus. Rheumatology. 2005;44:1507–1513. doi: 10.1093/rheumatology/kei083. PubMed DOI

Zhao M, Wang J, Liao W, Li D, Li M, Wu H, et al. Increased 5-hydroxymethylcytosine in CD4(+) T cells in systemic lupus erythematosus. J Autoimmun. 2016;69:64–73. doi: 10.1016/j.jaut.2016.03.001. PubMed DOI

Goules A, Tzioufas AG, Manousakis MN, Kirou KA, Crow MK, Routsias JG. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. J Autoimmun. 2006;26:165–171. doi: 10.1016/j.jaut.2006.02.002. PubMed DOI

Ciferska H, Horak P, Hermanova Z, Ordeltova M, Zadrazil J, Tichy T, et al. The levels of sCD30 and of sCD40L in a group of patients with systemic lupus erythematodes and their diagnostic value. Clin Rheumatol. 2007;26:723–728. doi: 10.1007/s10067-006-0389-9. PubMed DOI

Yellin MJ, D’Agati V, Parkinson G, Han AS, Szema A, Baum D, et al. Immunohistologic analysis of renal CD40 and CD40L expression in lupus nephritis and other glomerulonephritides. Arthritis Rheum. 1997;40:124–134. doi: 10.1002/art.1780400117. PubMed DOI

Ripoll E, Merino A, Herrero-Fresneda I, Aran JM, Goma M, Bolanos N, et al. CD40 gene silencing reduces the progression of experimental lupus nephritis modulating local milieu and systemic mechanisms. PLoS ONE. 2013;8:e65068. doi: 10.1371/journal.pone.0065068. PubMed DOI PMC

Nakatani K, Yoshimoto S, Iwano M, Asai O, Samejima K, Sakan H, et al. Fractalkine expression and CD16 + monocyte accumulation in glomerular lesions: association with their severity and diversity in lupus models. Am J Physiol Renal Physiol. 2010;299:F207–F216. doi: 10.1152/ajprenal.00482.2009. PubMed DOI

Inoue A, Hasegawa H, Kohno M, Ito MR, Terada M, Imai T, et al. Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis Rheum. 2005;52:1522–1533. doi: 10.1002/art.21007. PubMed DOI

Han GM, Chen SL, Shen N, Ye S, Bao CD, Gu YY. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun. 2003;4:177–186. doi: 10.1038/sj.gene.6363966. PubMed DOI

Tucci M, Quatraro C, Lombardi L, Pellegrino C, Dammacco F, Silvestris F. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 2008;58:251–262. doi: 10.1002/art.23186. PubMed DOI

Bracci-Laudiero L, Aloe L, Levi-Montalcini R, Galeazzi M, Schilter D, Scully JL, et al. Increased levels of NGF in sera of systemic lupus erythematosus patients. Neuroreport. 1993;4:563–565. doi: 10.1097/00001756-199305000-00025. PubMed DOI

Antonucci MT, Bonofiglio R, Papalia T, Caruso F, Caroleo MC, Mancuso D, et al. Nerve growth factor and its monocyte receptors are affected in kidney disease. Nephron Clin Pract. 2009;111:c21–c28. doi: 10.1159/000178819. PubMed DOI

Morigi M, Locatelli M, Rota C, Buelli S, Corna D, Rizzo P, et al. A previously unrecognized role of C3a in proteinuric progressive nephropathy. Sci Rep. 2016;6:28445. doi: 10.1038/srep28445. PubMed DOI PMC

Onodera H, Nagata T, Kanazawa M, Taguma Y, Itoyama Y. Increased plasma GDNF levels in patients with chronic renal diseases. Nephrol Dial Transpl. 1999;14:1604–1605. doi: 10.1093/ndt/14.6.1604. PubMed DOI

Kalechman Y, Sredni B, Weinstein T, Freidkin I, Tobar A, Albeck M, et al. Production of the novel mesangial autocrine growth factors GDNF and IL-10 is regulated by the immunomodulator AS101. J Am Soc Nephrol. 2003;14:620–630. doi: 10.1097/01.ASN.0000053415.29636.4F. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...