Inflammation time-axis in aseptic loosening of total knee arthroplasty: A preliminary study

. 2019 ; 14 (8) : e0221056. [epub] 20190830

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31469844

OBJECTIVE: Aseptic loosening (AL) is the most frequent long-term reason for revision of total knee arthroplasty (TKA) affecting about 15-20% patients within 20 years after the surgery. Although there is a solid body of evidence about the crucial role of inflammation in the AL pathogenesis, scared information on inflammation signature and its time-axis in tissues around TKA exists. DESIGN: The inflammation protein signatures in pseudosynovial tissues collected at revision surgery from patients with AL (AL, n = 12) and those with no clinical/radiographic signs of AL (non-AL, n = 9) were investigated by Proximity Extension Assay (PEA)-Immunoassay and immunohistochemistry. RESULTS: AL tissues had elevated levels of TNF-family members sTNFR2, TNFSF14, sFasL, sBAFF, cytokines/chemokines IL8, CCL2, IL1RA/IL36, sIL6R, and growth factors sAREG, CSF1, comparing to non-AL. High interindividual variability in protein levels was evident particularly in non-AL. Levels of sTNFR2, sBAFF, IL8, sIL6R, and MPO discriminated between AL and non-AL and were associated with the time from index surgery, suggesting the cumulative character of inflammatory osteolytic response to prosthetic byproducts. The source of elevated inflammatory molecules was macrophages and multinucleated osteoclast-like cells in AL and histiocytes and osteoclast-like cells in non-AL tissues, respectively. All proteins were present in higher levels in osteoclast-like cells than in macrophages. CONCLUSIONS: Our study revealed a differential inflammation signature between AL and non-AL stages of TKA. It also highlighted the unique patient's response to TKA in non-AL stages. Further confirmation of our preliminary results on a larger cohort is needed. Analysis of the time-axis of processes ongoing around TKA implantation may help to understand the mechanisms driving periprosthetic bone resorption needed for diagnostic/preventative strategies.

Zobrazit více v PubMed

Evans JT, Walker RW, Evans JP, Blom AW, Sayers A, Whitehouse MR. How long does a knee replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet. 2019;393(10172):655–63. Epub 2019/02/21. 10.1016/S0140-6736(18)32531-5 PubMed DOI PMC

Sharkey PF, Lichstein PM, Shen C, Tokarski AT, Parvizi J. Why are total knee arthroplasties failing today—has anything changed after 10 years? The Journal of arthroplasty. 2014;29(9):1774–8. Epub 2014/07/11. 10.1016/j.arth.2013.07.024 . PubMed DOI

Mbalaviele G, Novack DV, Schett G, Teitelbaum SL. Inflammatory osteolysis: a conspiracy against bone. J Clin Invest. 2017;127(6):2030–9. Epub 2017/06/02. 10.1172/JCI93356 PubMed DOI PMC

Gallo J, Vaculova J, Goodman SB, Konttinen YT, Thyssen JP. Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement. Acta biomaterialia. 2014;10(6):2354–66. 10.1016/j.actbio.2014.02.003 . PubMed DOI PMC

Ogle ME, Segar CE, Sridhar S, Botchwey EA. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp Biol Med (Maywood). 2016;241(10):1084–97. Epub 2016/05/28. 10.1177/1535370216650293 PubMed DOI PMC

Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta biomaterialia. 2013;9(9):8046–58. 10.1016/j.actbio.2013.05.005 . PubMed DOI PMC

Cyndari KI, Goodheart JR, Miller MA, Oest ME, Damron TA, Mann KA. Peri-Implant Distribution of Polyethylene Debris in Postmortem-Retrieved Knee Arthroplasties: Can Polyethylene Debris Explain Loss of Cement-Bone Interlock in Successful Total Knee Arthroplasties? The Journal of arthroplasty. 2017;32(7):2289–300. Epub 2017/03/13. 10.1016/j.arth.2017.01.047 PubMed DOI PMC

Mukka SS, Andersson GN, Hultenby KR, Skoldenberg OG, Nordahl JP, Eisler TM. Osteoclasts in Periprosthetic Osteolysis: The Charnley Arthroplasty Revisited. The Journal of arthroplasty. 2017;32(10):3219–27. Epub 2017/06/27. 10.1016/j.arth.2017.05.030 . PubMed DOI

Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in immunology. 2008;20(2):86–100. 10.1016/j.smim.2007.11.004 PubMed DOI PMC

Landgraeber S, Jager M, Jacobs JJ, Hallab NJ. The pathology of orthopedic implant failure is mediated by innate immune system cytokines. Mediators of inflammation. 2014;2014:185150 10.1155/2014/185150 PubMed DOI PMC

Pajarinen J, Nabeshima A, Lin TH, Sato T, Gibon E, Jamsen E, et al. (*) Murine Model of Progressive Orthopedic Wear Particle-Induced Chronic Inflammation and Osteolysis. Tissue Eng Part C Methods. 2017;23(12):1003–11. Epub 2017/10/06. 10.1089/ten.TEC.2017.0166 PubMed DOI PMC

Konttinen YT, Zhao D, Beklen A, Ma G, Takagi M, Kivela-Rajamaki M, et al. The microenvironment around total hip replacement prostheses. Clinical orthopaedics and related research. 2005;(430):28–38. Epub 2005/01/22. 10.1097/01.blo.0000150451.50452.da . PubMed DOI

Athanasou NA. The pathobiology and pathology of aseptic implant failure. Bone Joint Res. 2016;5(5):162–8. Epub 2016/05/06. 10.1302/2046-3758.55.BJR-2016-0086 PubMed DOI PMC

Fahlgren A, Bostrom MP, Yang X, Johansson L, Edlund U, Agholme F, et al. Fluid pressure and flow as a cause of bone resorption. Acta orthopaedica. 2010;81(4):508–16. 10.3109/17453674.2010.504610 PubMed DOI PMC

Goodheart JR, Miller MA, Oest ME, Mann KA. Trabecular resorption patterns of cement-bone interlock regions in total knee replacements. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2017;35(12):2773–80. Epub 2017/04/30. 10.1002/jor.23586 PubMed DOI PMC

Cooper HJ. Emerging applications of proteomics in hip and knee arthroplasty. Expert Rev Proteomics. 2014;11(1):5–8. Epub 2013/12/20. 10.1586/14789450.2014.865522 . PubMed DOI

Shanbhag AS, Kaufman AM, Hayata K, Rubash HE. Assessing osteolysis with use of high-throughput protein chips. The Journal of bone and joint surgery American volume. 2007;89(5):1081–9. 10.2106/JBJS.F.00330 . PubMed DOI

Eastwood SE, John A, Jones SA, Hodgson H, Mason D, Waddington R, et al. Osteoclastogenesis-related cytokines and peri-prosthetic osteolysis in revision metal-on-metal total hip replacements. Hip international: the journal of clinical and experimental research on hip pathology and therapy. 2015;25(4):355–60. Epub 2015/05/09. 10.5301/hipint.5000241 . PubMed DOI

Flecher X, Rolland C, Rixrath E, Argenson JN, Robert P, Bongrand P, et al. Local and systemic activation of the mononuclear phagocyte system in aseptic loosening of total hip arthroplasty. Journal of clinical immunology. 2009;29(5):681–90. Epub 2009/06/19. 10.1007/s10875-009-9305-9 . PubMed DOI

Chaganti RK, Purdue E, Sculco TP, Mandl LA. Elevation of serum tumor necrosis factor alpha in patients with periprosthetic osteolysis: a case-control study. Clinical orthopaedics and related research. 2014;472(2):584–9. Epub 2013/12/07. 10.1007/s11999-013-3235-9 PubMed DOI PMC

Dasa V, Kramer JM, Gaffen SL, Kirkwood KL, Mihalko WM. Is monocyte chemotactic protein 1 elevated in aseptic loosening of TKA? A pilot study. Clinical orthopaedics and related research. 2012;470(7):1879–84. Epub 2011/12/02. 10.1007/s11999-011-2191-5 PubMed DOI PMC

He T, Wu W, Huang Y, Zhang X, Tang T, Dai K. Multiple biomarkers analysis for the early detection of prosthetic aseptic loosening of hip arthroplasty. International orthopaedics. 2013;37(6):1025–31. Epub 2013/03/08. 10.1007/s00264-013-1837-1 PubMed DOI PMC

Gallo J, Kolar M, Dendis M, Loveckova Y, Sauer P, Zapletalova J, et al. Culture and PCR analysis of joint fluid in the diagnosis of prosthetic joint infection. The new microbiologica. 2008;31(1):97–104. . PubMed

Tomankova T, Kriegova E, Fillerova R, Luzna P, Ehrmann J, Gallo J. Comparison of periprosthetic tissues in knee and hip joints: differential expression of CCL3 and DC-STAMP in total knee and hip arthroplasty and similar cytokine profiles in primary knee and hip osteoarthritis. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2014;22(11):1851–60. Epub 2014/08/26. 10.1016/j.joca.2014.08.004 . PubMed DOI

Pinol I, Torres A, Gil G, Prats E, Puig-Verdier L, Hinarejos P. Polyethylene particles in joint fluid and osteolysis in revision total knee arthroplasty. The Knee. 2014;21(2):402–5. Epub 2013/11/19. 10.1016/j.knee.2013.10.013 . PubMed DOI

Schneiderova P, Pika T, Gajdos P, Fillerova R, Kromer P, Kudelka M, et al. Serum protein fingerprinting by PEA immunoassay coupled with a pattern-recognition algorithms distinguishes MGUS and multiple myeloma. Oncotarget. 2017;8(41):69408–21. Epub 2016/08/12. 10.18632/oncotarget.11242 PubMed DOI PMC

Petrackova A, Smrzova A, Gajdos P, Schubertova M, Schneiderova P, Kromer P, et al. Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay. Clin Proteomics. 2017;14:32 Epub 2017/10/14. 10.1186/s12014-017-9167-8 PubMed DOI PMC

Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PloS one. 2014;9(4):e95192 Epub 2014/04/24. 10.1371/journal.pone.0095192 PubMed DOI PMC

Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P, et al. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer cell. 2012;21(4):517–31. 10.1016/j.ccr.2012.01.021 . PubMed DOI

Ochodkova E, Zehnalova S., Kudelka M., editor Graph construction based on local representativeness Lecture notes in computer science; 2017; Cham: Springer.

Turcsanyi P, Kriegova E, Kudelka M, Radvansky M, Kruzova L, Urbanova R, et al. Improving risk-stratification of patients with chronic lymphocytic leukemia using multivariate patient similarity networks. Leuk Res. 2019;79:60–8. Epub 2019/03/11. 10.1016/j.leukres.2019.02.005 . PubMed DOI

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech-Theory E. 2008. doi: Artn P10008 10.1088/1742-5468/2008/10/P10008 PubMed PMID: WOS:000260529900010. DOI

Nason R, Jung JY, Chole RA. Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: a mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol. 2009;10(2):151–60. Epub 2009/01/16. 10.1007/s10162-008-0153-8 PubMed DOI PMC

Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. The Journal of experimental medicine. 2000;191(2):275–86. Epub 2000/01/19. 10.1084/jem.191.2.275 PubMed DOI PMC

Brunetti G, Rizzi R, Oranger A, Gigante I, Mori G, Taurino G, et al. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget. 2014;5(24):12950–67. Epub 2014/12/03. 10.18632/oncotarget.2633 PubMed DOI PMC

Park H, Jung YK, Park OJ, Lee YJ, Choi JY, Choi Y. Interaction of Fas ligand and Fas expressed on osteoclast precursors increases osteoclastogenesis. Journal of immunology. 2005;175(11):7193–201. Epub 2005/11/23. 10.4049/jimmunol.175.11.7193 . PubMed DOI

Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, et al. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. The Journal of experimental medicine. 2003;198(5):771–81. Epub 2003/08/27. 10.1084/jem.20030116 PubMed DOI PMC

Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annual review of immunology. 2009;27:693–733. Epub 2009/03/24. 10.1146/annurev.immunol.021908.132641 . PubMed DOI

Pathak JL, Bakker AD, Verschueren P, Lems WF, Luyten FP, Klein-Nulend J, et al. CXCL8 and CCL20 Enhance Osteoclastogenesis via Modulation of Cytokine Production by Human Primary Osteoblasts. PloS one. 2015;10(6):e0131041 Epub 2015/06/24. 10.1371/journal.pone.0131041 PubMed DOI PMC

Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone. 2003;33(1):28–37. Epub 2003/08/16. . PubMed

Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA, et al. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer research. 2005;65(23):11001–9. Epub 2005/12/03. 10.1158/0008-5472.CAN-05-2630 . PubMed DOI

Khan UA, Hashimi SM, Bakr MM, Forwood MR, Morrison NA. CCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells. Journal of cellular biochemistry. 2016;117(2):382–9. Epub 2015/07/25. 10.1002/jcb.25282 . PubMed DOI

Jiang X, Sato T, Yao Z, Keeney M, Pajarinen J, Lin TH, et al. Local delivery of mutant CCL2 protein-reduced orthopaedic implant wear particle-induced osteolysis and inflammation in vivo. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2016;34(1):58–64. Epub 2015/07/16. 10.1002/jor.22977 PubMed DOI PMC

Nabeshima A, Pajarinen J, Lin TH, Jiang X, Gibon E, Cordova LA, et al. Mutant CCL2 protein coating mitigates wear particle-induced bone loss in a murine continuous polyethylene infusion model. Biomaterials. 2017;117:1–9. Epub 2016/12/06. 10.1016/j.biomaterials.2016.11.039 PubMed DOI PMC

Feng W, Liu H, Luo T, Liu D, Du J, Sun J, et al. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-kappaB, ERK and JNK signaling pathways. Scientific reports. 2017;7:41411 Epub 2017/01/28. 10.1038/srep41411 PubMed DOI PMC

Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16. Epub 2010/08/04. 10.1093/intimm/dxq431 . PubMed DOI

Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005;115(2):282–90. Epub 2005/01/26. 10.1172/JCI23394 PubMed DOI PMC

Kitaura H, Zhou P, Kim HJ, Novack DV, Ross FP, Teitelbaum SL. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest. 2005;115(12):3418–27. Epub 2005/11/19. 10.1172/JCI26132 PubMed DOI PMC

Panagopoulos V, Liapis V, Zinonos I, Hay S, Leach DA, Ingman W, et al. Peroxidase enzymes inhibit osteoclast differentiation and bone resorption. Mol Cell Endocrinol. 2017;440:8–15. Epub 2016/11/12. 10.1016/j.mce.2016.11.007 . PubMed DOI

Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev. 2009;23(16):1882–94. Epub 2009/07/18. 10.1101/gad.1824809 PubMed DOI PMC

Taverna S, Pucci M, Giallombardo M, Di Bella MA, Santarpia M, Reclusa P, et al. Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Scientific reports. 2017;7(1):3170 Epub 2017/06/11. 10.1038/s41598-017-03460-y PubMed DOI PMC

Hallab NJ, Jacobs JJ. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris. Front Endocrinol (Lausanne). 2017;8:5 Epub 2017/02/06. 10.3389/fendo.2017.00005 PubMed DOI PMC

Catelas I, Jacobs JJ. Biologic activity of wear particles. Instructional course lectures. 2010;59:3–16. . PubMed

Del Buono A, Denaro V, Maffulli N. Genetic susceptibility to aseptic loosening following total hip arthroplasty: a systematic review. British medical bulletin. 2012;101:39–55. 10.1093/bmb/ldr011 . PubMed DOI

Greenfield EM. Do genetic susceptibility, Toll-like receptors, and pathogen-associated molecular patterns modulate the effects of wear? Clinical orthopaedics and related research. 2014;472(12):3709–17. Epub 2014/07/19. 10.1007/s11999-014-3786-4 PubMed DOI PMC

Willert HG, Semlitsch M. Tissue reactions to plastic and metallic wear products of joint endoprostheses. Clinical orthopaedics and related research. 1996;(333):4–14. Epub 1996/12/01. . PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Diagnosis and management of implant debris-associated inflammation

. 2020 Jan ; 17 (1) : 41-56. [epub] 20191217

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...