• This record comes from PubMed

Formation of Staphylococcus aureus Biofilm in the Presence of Sublethal Concentrations of Disinfectants Studied via a Transcriptomic Analysis Using Transcriptome Sequencing (RNA-seq)

. 2017 Dec 15 ; 83 (24) : . [epub] 20171201

Language English Country United States Media electronic-print

Document type Journal Article

Staphylococcus aureus is a common biofilm-forming pathogen. Low doses of disinfectants have previously been reported to promote biofilm formation and to increase virulence. The aim of this study was to use transcriptome sequencing (RNA-seq) analysis to investigate global transcriptional changes in S. aureus in response to sublethal concentrations of the commonly used food industry disinfectants ethanol (EtOH) and chloramine T (ChT) and their combination (EtOH_ChT) in order to better understand the effects of these agents on biofilm formation. Treatment with EtOH and EtOH_ChT resulted in more significantly altered expression profiles than treatment with ChT. Our results revealed that EtOH and EtOH_ChT treatments enhanced the expression of genes responsible for regulation of gene expression (sigB), cell surface factors (clfAB), adhesins (sdrDE), and capsular polysaccharides (cap8EFGL), resulting in more intact biofilm. In addition, in this study we were able to identify the pathways involved in the adaptation of S. aureus to the stress of ChT treatment. Further, EtOH suppressed the effect of ChT on gene expression when these agents were used together at sublethal concentrations. These data show that in the presence of sublethal concentrations of tested disinfectants, S. aureus cells trigger protective mechanisms and try to cope with them.IMPORTANCE So far, the effect of disinfectants is not satisfactorily explained. The presented data will allow a better understanding of the mode of disinfectant action with regard to biofilm formation and the ability of bacteria to survive the treatment. Such an understanding could contribute to the effort to eliminate possible sources of bacteria, making disinfectant application as efficient as possible. Biofilm formation plays significant role in the spread and pathogenesis of bacterial species.

See more in PubMed

Mermel LA, Allon M, Bouza E, Flynn P, O'Grady NP, Raad II, Rijnders BJ, Sheretz RJ, Warren DK. 2010. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45. doi:10.1086/599376. PubMed DOI PMC

Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA. 2011. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301:630–634. doi:10.1016/j.ijmm.2011.09.004. PubMed DOI

Crago B, Ferrato C, Drews SJ, Svenson LW, Tyrrell G, Louie M. 2012. Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in food samples associated with foodborne illness in Alberta, Canada from 2007 to 2010. Food Microbiol 32:202–205. doi:10.1016/j.fm.2012.04.012. PubMed DOI

Doulgeraki AI, Di Ciccio P, Ianieri A, Nychas GJE. 2017. Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Res Microbiol 168:1–15. doi:10.1016/j.resmic.2016.08.001. PubMed DOI

Gutierrez D, Delgado S, Vazquez-Sanchez D, Martinez B, Cabo ML, Rodriguez A, Herrera JJ, García P. 2012. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl Environ Microbiol 78:8547–8554. doi:10.1128/AEM.02045-12. PubMed DOI PMC

Gotz F. 2002. Staphylococcus and biofilms. Mol Microbiol 43:1367–1378. PubMed

Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032. doi:10.1080/08927014.2011.626899. PubMed DOI

Halliman DG, Ahearn DG. 2004. Relative susceptibilities to vancomycin and quinupristin-dalfopristin of adhered and planktonic vancomycin-resistant and vancomycin-susceptible coagulase-negative staphylococci. Curr Microbiol 48:214–218. doi:10.1007/s00284-003-4091-8. PubMed DOI

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298. doi:10.1126/science.280.5361.295. PubMed DOI

Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. 2004. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850. doi:10.1128/JB.186.6.1838-1850.2004. PubMed DOI PMC

Knobloch JKM, Horstkotte MA, Rohde H, Kaulfers PM, Mack D. 2002. Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemother 49:683–687. doi:10.1093/jac/49.4.683. PubMed DOI

Korem M, Gov Y, Rosenberg M. 2010. Global gene expression in Staphylococcus aureus following exposure to alcohol. Microb Pathog 48:74–84. doi:10.1016/j.micpath.2009.11.002. PubMed DOI

Kastbjerg VG, Larsen MH, Gram L, Ingmer H. 2010. Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes. Appl Environ Microbiol 76:303–309. doi:10.1128/AEM.00925-09. PubMed DOI PMC

Silveira MG, Baumgartner M, Rombouts FM, Abee T. 2004. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755. doi:10.1128/AEM.70.5.2748-2755.2004. PubMed DOI PMC

Gilbert P, McBain AJ. 2003. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16:189–208. doi:10.1128/CMR.16.2.189-208.2003. PubMed DOI PMC

Rolland SL, Carrick TE, Walls AW, McCabe JF. 2007. Dentin decontamination using chloramine T prior to experiments involving bacteria. Dent Mater 23:1468–1472. doi:10.1016/j.dental.2007.01.001. PubMed DOI

Bal Krishna KC, Sathasivan A, Ginige MP. 2013. Microbial community changes with decaying chloramine residuals in a lab-scale system. Water Res 47:4666–4679. doi:10.1016/j.watres.2013.04.035. PubMed DOI

Rode TM, Langsrud S, Holck A, Moretro T. 2007. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116:372–383. doi:10.1016/j.ijfoodmicro.2007.02.017. PubMed DOI

Cincarova L, Polansky O, Babak V, Kulich P, Kralik P. 2016. Changes in the expression of biofilm-associated surface proteins in Staphylococcus aureus food-environmental isolates subjected to sublethal concentrations of disinfectants. Biomed Res Int 2016:4034517. doi:10.1155/2016/4034517. PubMed DOI PMC

Ulrich M, Bastian M, Cramton SE, Ziegler K, Pragman AA, Bragonzi A, Memmi G, Wolz C, Schlievert PM, Cheung A, Döring G. 2007. The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol 65:1276–1287. doi:10.1111/j.1365-2958.2007.05863.x. PubMed DOI

Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. 2011. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459. doi:10.4161/viru.2.5.17724. PubMed DOI PMC

Houston P, Rowe SE, Pozzi C, Waters EM, O'Gara JP. 2011. Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun 79:1153–1165. doi:10.1128/IAI.00364-10. PubMed DOI PMC

Nicholas RO, Li T, McDevitt D, Marra A, Sucoloski S, Demarsh PL, Gentry DR. 1999. Isolation and characterization of a sigB deletion mutant of Staphylococcus aureus. Infect Immun 67:3667–3669. PubMed PMC

O'Riordan K, Lee JC. 2004. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17:218–234. doi:10.1128/CMR.17.1.218-234.2004. PubMed DOI PMC

Cocchiaro JL, Gomez MI, Risley A, Solinga R, Sordelli DO, Lee JC. 2006. Molecular characterization of the capsule locus from non-typeable Staphylococcus aureus. Mol Microbiol 59:948–960. doi:10.1111/j.1365-2958.2005.04978.x. PubMed DOI

Luong TT, Sau K, Roux C, Sau S, Dunman PM, Lee CY. 2011. Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain Newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS. J Bacteriol 193:686–694. doi:10.1128/JB.00987-10. PubMed DOI PMC

Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I. 2003. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087. doi:10.1046/j.1365-2958.2003.03493.x. PubMed DOI

Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. 2010. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One 5:e10790. doi:10.1371/journal.pone.0010790. PubMed DOI PMC

Chan WC, Coyle BJ, Williams P. 2004. Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem 47:4633–4641. doi:10.1021/jm0400754. PubMed DOI

Boles BR, Horswill AR. 2008. agr-Mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052. doi:10.1371/journal.ppat.1000052. PubMed DOI PMC

Arya R, Princy SA. 2013. An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 8:1339–1353. doi:10.2217/fmb.13.92. PubMed DOI

Pratten J, Foster SJ, Chan PF, Wilson M, Nair SP. 2001. Staphylococcus aureus accessory regulators: expression within biofilms and effect on adhesion. Microb Infect 3:633–637. doi:10.1016/S1286-4579(01)01418-6. PubMed DOI

Flannagan RS, Cosio G, Grinstein S. 2009. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366. doi:10.1038/nrmicro2128. PubMed DOI

Horsburgh MJ, Ingham E, Foster SJ. 2001. In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183:468–475. doi:10.1128/JB.183.2.468-475.2001. PubMed DOI PMC

Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. 2007. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 189:1025–1035. doi:10.1128/JB.01524-06. PubMed DOI PMC

Wolf C, Hochgrafe F, Kusch H, Albrecht D, Hecker M, Engelmann S. 2008. Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8:3139–3153. doi:10.1002/pmic.200701062. PubMed DOI

Ushijima Y, Yoshida O, Villanueva MJ, Ohniwa RL, Morikawa K. 2016. Nucleoid clumping is dispensable for the Dps-dependent hydrogen peroxide resistance in Staphylococcus aureus. Microbiology 162:1822–1828. doi:10.1099/mic.0.000353. PubMed DOI

Michta E, Ding W, Zhu SC, Blin K, Ruan HQ, Wang R, Wohlleben W, Mast Y. 2014. Proteomic approach to reveal the regulatory function of aconitase AcnA in oxidative stress response in the antibiotic producer Streptomyces viridochromogenes Tu494. PLoS One 9:e87905. doi:10.1371/journal.pone.0087905. PubMed DOI PMC

Graham JW, Lei MG, Lee CY. 2013. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J Bacteriol 195:4506–4516. doi:10.1128/JB.00758-13. PubMed DOI PMC

Chatterjee I, Becker P, Grundmeier M, Bischoff M, Somerville GA, Peters G, Sinha B, Harraghy N, Proctor RA, Herrmann M. 2005. Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death. J Bacteriol 187:4488–4496. doi:10.1128/JB.187.13.4488-4496.2005. PubMed DOI PMC

Xue T, You Y, Hong D, Sun H, Sun B. 2011. The Staphylococcus aureus KdpDE two-component system couples extracellular K+ sensing and Agr signaling to infection programming. Infect Immun 79:2154–2167. doi:10.1128/IAI.01180-10. PubMed DOI PMC

Resch A, Rosenstein R, Nerz C, Gotz F. 2005. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71:2663–2676. doi:10.1128/AEM.71.5.2663-2676.2005. PubMed DOI PMC

Makhlin J, Kofman T, Borovok I, Kohler C, Engelmann S, Cohen G, Aharonowitz Y. 2007. Staphylococcus aureus ArcR controls expression of the arginine deiminase operon. J Bacteriol 189:5976–5986. doi:10.1128/JB.00592-07. PubMed DOI PMC

Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F. 2007. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899. doi:10.1111/j.1600-0463.2007.apm_630.x. PubMed DOI

Ewels P, Magnusson M, Lundin S, Kaller M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. doi:10.1093/bioinformatics/btw354. PubMed DOI PMC

Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. 2013. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63:41–49. doi:10.1016/j.ymeth.2013.06.027. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. doi:10.1093/bioinformatics/bts635. PubMed DOI PMC

Wang LG, Wang SQ, Li W. 2012. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185. doi:10.1093/bioinformatics/bts356. PubMed DOI

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:e550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616. PubMed DOI PMC

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleœ AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. 2015. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121. doi:10.1038/nmeth.3252. PubMed DOI PMC

Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449. doi:10.1093/bioinformatics/bti551. PubMed DOI

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...