• This record comes from PubMed

Selective binding of choline by a phosphate-coordination-based triple helicate featuring an aromatic box

. 2017 Oct 16 ; 8 (1) : 938. [epub] 20171016

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Links

PubMed 29038482
PubMed Central PMC5643546
DOI 10.1038/s41467-017-00915-8
PII: 10.1038/s41467-017-00915-8
Knihovny.cz E-resources

In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. This similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives, as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, L-carnitine, and glycine betaine effectively.The choline-binding protein ChoX exhibits a synergistic dual-site binding mode that allows it to discriminate choline over structural analogues. Here, the authors design a biomimetic triple anion helicate receptor whose selectivity for choline arises from a similar binding mechanism.

See more in PubMed

Dupont L, et al. The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. J. Bacteriol. 2004;186:5988–5996. doi: 10.1128/JB.186.18.5988-5996.2004. PubMed DOI PMC

Oswald C, et al. Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from Sinorhizobium meliloti in the liganded and unliganded-closed states. J. Biol. Chem. 2008;283:32848–32859. doi: 10.1074/jbc.M806021200. PubMed DOI

Daze KD, Hof F. The cation-π interaction at protein-protein interaction interfaces: developing and learning from synthetic mimics of proteins that bind methylated lysines. Acc. Chem. Res. 2013;46:937–945. doi: 10.1021/ar300072g. PubMed DOI

Ma JC, Dougherty DA. The cation-π interaction. Chem. Rev. 1997;97:1303–1324. doi: 10.1021/cr9603744. PubMed DOI

Salonen LM, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem. Int. Ed. 2011;50:4808–4842. doi: 10.1002/anie.201007560. PubMed DOI

Schneider H-J. Binding mechanisms in supramolecular complexes. Angew Chem. Int. Ed. 2009;48:3924–3977. doi: 10.1002/anie.200802947. PubMed DOI

Meyer EA, Castellano RK, Diederich F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem. Int. Ed. 2003;42:1210–1250. doi: 10.1002/anie.200390319. PubMed DOI

Sussman JL, et al. Atomic structure of acetyicholinesterase from Torpedo cal fornica: a prototypic acetyicholine-binding protein. Science. 1991;253:872–879. doi: 10.1126/science.1678899. PubMed DOI

Jogl G, Tong L. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell. 2003;112:113–122. doi: 10.1016/S0092-8674(02)01228-X. PubMed DOI

Kim A-R, Rylett RJ, Shilton BH. Substrate binding and catalytic mechanism of human choline acetyltransferase. Biochemistry. 2006;45:14621–14631. doi: 10.1021/bi061536l. PubMed DOI

Lehn J-M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture) Angew Chem. Int. Ed. 1988;27:89–112. doi: 10.1002/anie.198800891. DOI

Steed, J. W. & Atwood, J. L. Supramolecular Chemistry 2nd edn (John Wiley & Sons, Ltd., New York, 2009).

Stang PJ. Abiological self-assembly via coordination: formation of 2D metallacycles and 3D metallacages with well-defined shapes and sizes and their chemistry. J. Am. Chem. Soc. 2012;134:11829–11830. doi: 10.1021/ja3047206. PubMed DOI

Caulder DL, Raymond KN. Supermolecules by design. Acc. Chem. Res. 1999;32:975–982. doi: 10.1021/ar970224v. DOI

Zarra S, Wood DM, Roberts DA, Nitschke JR. Molecular containers in complex chemical systems. Chem. Soc. Rev. 2015;44:419–432. doi: 10.1039/C4CS00165F. PubMed DOI

Fujita M, et al. Molecular paneling via coordination. Chem. Commun. 2001;6:509–518. doi: 10.1039/b008684n. DOI

Dougherty DA, Stauffer DA. Acetylcholine binding by a synthetic receptor: Implications for biological recognition. Science. 1990;250:1558–1560. doi: 10.1126/science.2274786. PubMed DOI

Zhang G, Mastalerz M. Organic cage compounds from shape-persistency to function. Chem. Soc. Rev. 2014;43:1934–1947. doi: 10.1039/C3CS60358J. PubMed DOI

Kobayashi K, Yamanaka M. Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. Chem. Soc. Rev. 2015;44:449–466. doi: 10.1039/C4CS00153B. PubMed DOI

Jordan JH, Gibb BC. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015;44:547–585. doi: 10.1039/C4CS00191E. PubMed DOI

Xue M, Yang Y, Chi X, Zhang Z, Huang F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012;45:1294–1308. doi: 10.1021/ar2003418. PubMed DOI

Guo D-S, Liu Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 2012;41:5907–5921. doi: 10.1039/c2cs35075k. PubMed DOI

Ahmad N, Younus HA, Chughtai AH, Verpoort F. Metal–organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 2015;44:9–25. doi: 10.1039/C4CS00222A. PubMed DOI

Galan A, Ballester P. Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 2016;45:1720–1737. doi: 10.1039/C5CS00861A. PubMed DOI

Wang ZJ, Clary KN, Bergman RG, Raymond KN, Toste FD. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013;5:100–103. doi: 10.1038/nchem.1531. PubMed DOI

Kaphan DM, Levin MD, Bergman RG, Raymond KN, Toste FD. A supramolecular microenvironment strategy for transition metal catalysis. Science. 2015;350:1235–1238. doi: 10.1126/science.aad3087. PubMed DOI

Pluth MD, Bergman RG, Raymond KN. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science. 2007;316:85–88. doi: 10.1126/science.1138748. PubMed DOI

Inokuma Y, Kawano M, Fujita M. Crystalline molecular flasks. Nat. Chem. 2011;3:349–358. doi: 10.1038/nchem.1031. PubMed DOI

Cullen W, Misuraca MC, Hunter CA, Williams NH, Ward MD. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 2016;8:231–236. doi: 10.1038/nchem.2452. PubMed DOI

Liu Y, et al. Self-aggregating deep cavitand acts as a fluorescence displacement sensor for lysine methylation. J. Am. Chem. Soc. 2016;138:10746–10749. doi: 10.1021/jacs.6b05897. PubMed DOI

Hansell C. Cellular imaging: buckets of binding. Nat. Chem. 2013;5:550.

Ghale G, et al. Chemosensing ensembles for monitoring biomembrane transport in real time. Angew Chem. Int. Ed. 2014;53:2762–2765. doi: 10.1002/anie.201309583. PubMed DOI

Ciardi M, Galán A, Ballester P. Tetra-phosphonate calix[4]pyrrole cavitands as multitopic receptors for the recognition of ion pairs. J. Am. Chem. Soc. 2015;137:2047–2055. doi: 10.1021/ja512590j. PubMed DOI

Ghang Y-J, et al. Selective cavitand-mediated endocytosis of targeted imaging agents into live cells. J. Am. Chem. Soc. 2013;135:7090–7093. doi: 10.1021/ja401273g. PubMed DOI PMC

Javor S, Rebek J. Activation of a water-soluble resorcinarene cavitand at the water–phosphocholine micelle interface. J. Am. Chem. Soc. 2011;133:17473–17478. doi: 10.1021/ja2073774. PubMed DOI

Hof F, Trembleau L, Ullrich EC, Rebek J., Jr. Acetylcholine recognition by a deep, biomimetic pocket. Angew Chem. Int. Ed. 2003;42:3150–3153. doi: 10.1002/anie.200351174. PubMed DOI

Ballester P, Shivanyuk A, Far AR, Rebek J., Jr. A synthetic receptor for choline and carnitine. J. Am. Chem. Soc. 2002;124:14014–14016. doi: 10.1021/ja0282689. PubMed DOI

Biros SM, Ullrich EC, Hof F, Trembleau L, Rebek JJrJ. Kinetically stable complexes in water: the role of hydration and hydrophobicity. J. Am. Chem. Soc. 2004;126:2870–2876. doi: 10.1021/ja038823m. PubMed DOI

Kang SO, Begum RA, Bowman-James K. Amide-based ligands for anion coordination. Angew Chem. Int. Ed. 2006;45:7882–7894. doi: 10.1002/anie.200602006. PubMed DOI

Bowman-James, K., Bianchi, A. & García-España, E. (eds) Anion Coordination Chemistry (Wiley-VCH, New York, 2012).

Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of supramolecular anion recognition. Chem. Rev. 2015;115:8038–8155. doi: 10.1021/acs.chemrev.5b00099. PubMed DOI

Gale PA, Quesada R. Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord. Chem. Rev. 2006;250:3219–3244. doi: 10.1016/j.ccr.2006.05.020. DOI

Li S, et al. A triple anion helicate assembled from a bis(biurea) ligand and phosphate ions. Angew Chem. Int. Ed. 2011;50:5721–5724. doi: 10.1002/anie.201180593. PubMed DOI

Wu B, et al. The effect of the spacer of bis(biurea) ligands on the structure of A2L3-type (A=anion) phosphate complexes. Chem. Eur. J. 2015;21:2588–2593. doi: 10.1002/chem.201405235. PubMed DOI

Yang D, et al. Encapsulation of halocarbons in a tetrahedral anion cage. Angew Chem. Int. Ed. 2015;54:8658–8661. doi: 10.1002/anie.201502399. PubMed DOI

Wu B, et al. Tetrahedral anion cage: self-assembly of a (PO4)4L4 complex from a tris(bisurea) ligand. Angew Chem. Int. Ed. 2013;52:5096–5100. doi: 10.1002/anie.201209930. PubMed DOI

Jia C, Zuo W, Zhang D, Yang X-J, Wu B. Anion recognition by oligo-(thio)urea-based receptors. Chem. Commun. 2016;52:9614–9627. doi: 10.1039/C6CC03761E. PubMed DOI

Jia C, et al. Highly efficient extraction of sulfate with a tripodal hexa-urea receptor. Angew Chem. Int. Ed. 2011;50:486–490. doi: 10.1002/anie.201004461. PubMed DOI

Zhao J, et al. Anion coordination-induced turn-on fluorescence of an oligourea-functionalized tetraphenylethene in a wide concentration range. Angew Chem. Int. Ed. 2014;53:632–6636. doi: 10.1002/anie.201308780. PubMed DOI

Hof F. Host–guest chemistry that directly targets lysine methylation: synthetic host molecules as alternatives to bio-reagents. Chem. Commun. 2016;66:10093–10108. doi: 10.1039/C6CC04771H. PubMed DOI

Rizzuto FJ, Wu W-Y, Ronson TK, Nitschke JR. Peripheral templation generates an MII6L4 guest-binding capsule. Angew Chem. Int. Ed. 2016;55:7958–7962. doi: 10.1002/anie.201602135. PubMed DOI PMC

Hynes MJ. EQNMR: a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J. Chem. Soc. Dalton Trans. 1993;0:311–312. doi: 10.1039/dt9930000311. DOI

Korbakov N, et al. Acetylcholine detection at micromolar concentrations with the use of an artificial receptor-based fluorescence switch. Langmuir. 2008;24:2580–2587. doi: 10.1021/la703010z. PubMed DOI

Kuzmič P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 1996;237:260–273. doi: 10.1006/abio.1996.0238. PubMed DOI

Minaker SA, Daze KD, Ma MCF, Hof F. Antibody-free reading of the histone code using a simple chemical sensor array. J. Am. Chem. Soc. 2012;134:11674–11680. doi: 10.1021/ja303465x. PubMed DOI

Guo D-S, Uzunova VD, Su X, Liu Y, Nau WM. Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem. Sci. 2011;2:1722–1734. doi: 10.1039/c1sc00231g. DOI

Hennig A, Bakirci H, Nau WM. Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat. Methods. 2007;4:629–632. doi: 10.1038/nmeth1064. PubMed DOI

Nau WM, Ghale G, Hennig A, Bakirci H, Bailey DM. Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. J. Am. Chem. Soc. 2009;131:11558–11570. doi: 10.1021/ja904165c. PubMed DOI

Koh KN, Araki K, Ikeda A, Otsuka H, Shinkai S. Reinvestigation of calixarene-based artificial-signaling acetylcholine receptors useful in neutral aqueous (water/methanol) solution. J. Am. Chem. Soc. 1996;118:755–758. doi: 10.1021/ja951488k. DOI

Shiraishi Y, Miyamoto R, Hirai T. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer. Langmuir. 2008;24:4273–4279. doi: 10.1021/la703890n. PubMed DOI

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Hostaš J, et al. A nexus between theory and experiment: non-empirical quantum mechanical computational methodology applied to cucurbit[n]uril-guest binding interactions. Chem. Eur. J. 2016;22:17226–17238. doi: 10.1002/chem.201601833. PubMed DOI

Rai SK, et al. Experimental and theoretical study for the assessment of the conformational stability of polymethylene-bridged heteroaromatic dimers: a case of unprecedented folding. Cryst. Growth Des. 2016;16:1176–1180. doi: 10.1021/acs.cgd.5b01807. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...