Selective binding of choline by a phosphate-coordination-based triple helicate featuring an aromatic box
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29038482
PubMed Central
PMC5643546
DOI
10.1038/s41467-017-00915-8
PII: 10.1038/s41467-017-00915-8
Knihovny.cz E-resources
- MeSH
- Acetylcholine chemistry metabolism MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Choline chemistry metabolism MeSH
- Phosphates chemistry metabolism MeSH
- Kinetics MeSH
- Binding, Competitive MeSH
- Crystallography, X-Ray MeSH
- Membrane Transport Proteins chemistry metabolism MeSH
- Models, Molecular MeSH
- Protein Domains * MeSH
- Proton Magnetic Resonance Spectroscopy MeSH
- Sinorhizobium meliloti metabolism MeSH
- Carrier Proteins chemistry metabolism MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Acetylcholine MeSH
- Bacterial Proteins MeSH
- Choline MeSH
- choline transporter MeSH Browser
- Phosphates MeSH
- Membrane Transport Proteins MeSH
- Carrier Proteins MeSH
In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. This similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives, as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, L-carnitine, and glycine betaine effectively.The choline-binding protein ChoX exhibits a synergistic dual-site binding mode that allows it to discriminate choline over structural analogues. Here, the authors design a biomimetic triple anion helicate receptor whose selectivity for choline arises from a similar binding mechanism.
Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 6119 USA
Department of Chemistry Ben Gurion University of the Negev 84105 Beer Sheva Israel
Institute of Organic Chemistry and Biochemistry 16010 Prague 6 Czech Republic
See more in PubMed
Dupont L, et al. The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. J. Bacteriol. 2004;186:5988–5996. doi: 10.1128/JB.186.18.5988-5996.2004. PubMed DOI PMC
Oswald C, et al. Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from Sinorhizobium meliloti in the liganded and unliganded-closed states. J. Biol. Chem. 2008;283:32848–32859. doi: 10.1074/jbc.M806021200. PubMed DOI
Daze KD, Hof F. The cation-π interaction at protein-protein interaction interfaces: developing and learning from synthetic mimics of proteins that bind methylated lysines. Acc. Chem. Res. 2013;46:937–945. doi: 10.1021/ar300072g. PubMed DOI
Ma JC, Dougherty DA. The cation-π interaction. Chem. Rev. 1997;97:1303–1324. doi: 10.1021/cr9603744. PubMed DOI
Salonen LM, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem. Int. Ed. 2011;50:4808–4842. doi: 10.1002/anie.201007560. PubMed DOI
Schneider H-J. Binding mechanisms in supramolecular complexes. Angew Chem. Int. Ed. 2009;48:3924–3977. doi: 10.1002/anie.200802947. PubMed DOI
Meyer EA, Castellano RK, Diederich F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem. Int. Ed. 2003;42:1210–1250. doi: 10.1002/anie.200390319. PubMed DOI
Sussman JL, et al. Atomic structure of acetyicholinesterase from Torpedo cal fornica: a prototypic acetyicholine-binding protein. Science. 1991;253:872–879. doi: 10.1126/science.1678899. PubMed DOI
Jogl G, Tong L. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell. 2003;112:113–122. doi: 10.1016/S0092-8674(02)01228-X. PubMed DOI
Kim A-R, Rylett RJ, Shilton BH. Substrate binding and catalytic mechanism of human choline acetyltransferase. Biochemistry. 2006;45:14621–14631. doi: 10.1021/bi061536l. PubMed DOI
Lehn J-M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture) Angew Chem. Int. Ed. 1988;27:89–112. doi: 10.1002/anie.198800891. DOI
Steed, J. W. & Atwood, J. L. Supramolecular Chemistry 2nd edn (John Wiley & Sons, Ltd., New York, 2009).
Stang PJ. Abiological self-assembly via coordination: formation of 2D metallacycles and 3D metallacages with well-defined shapes and sizes and their chemistry. J. Am. Chem. Soc. 2012;134:11829–11830. doi: 10.1021/ja3047206. PubMed DOI
Caulder DL, Raymond KN. Supermolecules by design. Acc. Chem. Res. 1999;32:975–982. doi: 10.1021/ar970224v. DOI
Zarra S, Wood DM, Roberts DA, Nitschke JR. Molecular containers in complex chemical systems. Chem. Soc. Rev. 2015;44:419–432. doi: 10.1039/C4CS00165F. PubMed DOI
Fujita M, et al. Molecular paneling via coordination. Chem. Commun. 2001;6:509–518. doi: 10.1039/b008684n. DOI
Dougherty DA, Stauffer DA. Acetylcholine binding by a synthetic receptor: Implications for biological recognition. Science. 1990;250:1558–1560. doi: 10.1126/science.2274786. PubMed DOI
Zhang G, Mastalerz M. Organic cage compounds from shape-persistency to function. Chem. Soc. Rev. 2014;43:1934–1947. doi: 10.1039/C3CS60358J. PubMed DOI
Kobayashi K, Yamanaka M. Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. Chem. Soc. Rev. 2015;44:449–466. doi: 10.1039/C4CS00153B. PubMed DOI
Jordan JH, Gibb BC. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015;44:547–585. doi: 10.1039/C4CS00191E. PubMed DOI
Xue M, Yang Y, Chi X, Zhang Z, Huang F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 2012;45:1294–1308. doi: 10.1021/ar2003418. PubMed DOI
Guo D-S, Liu Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 2012;41:5907–5921. doi: 10.1039/c2cs35075k. PubMed DOI
Ahmad N, Younus HA, Chughtai AH, Verpoort F. Metal–organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 2015;44:9–25. doi: 10.1039/C4CS00222A. PubMed DOI
Galan A, Ballester P. Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 2016;45:1720–1737. doi: 10.1039/C5CS00861A. PubMed DOI
Wang ZJ, Clary KN, Bergman RG, Raymond KN, Toste FD. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 2013;5:100–103. doi: 10.1038/nchem.1531. PubMed DOI
Kaphan DM, Levin MD, Bergman RG, Raymond KN, Toste FD. A supramolecular microenvironment strategy for transition metal catalysis. Science. 2015;350:1235–1238. doi: 10.1126/science.aad3087. PubMed DOI
Pluth MD, Bergman RG, Raymond KN. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science. 2007;316:85–88. doi: 10.1126/science.1138748. PubMed DOI
Inokuma Y, Kawano M, Fujita M. Crystalline molecular flasks. Nat. Chem. 2011;3:349–358. doi: 10.1038/nchem.1031. PubMed DOI
Cullen W, Misuraca MC, Hunter CA, Williams NH, Ward MD. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 2016;8:231–236. doi: 10.1038/nchem.2452. PubMed DOI
Liu Y, et al. Self-aggregating deep cavitand acts as a fluorescence displacement sensor for lysine methylation. J. Am. Chem. Soc. 2016;138:10746–10749. doi: 10.1021/jacs.6b05897. PubMed DOI
Hansell C. Cellular imaging: buckets of binding. Nat. Chem. 2013;5:550.
Ghale G, et al. Chemosensing ensembles for monitoring biomembrane transport in real time. Angew Chem. Int. Ed. 2014;53:2762–2765. doi: 10.1002/anie.201309583. PubMed DOI
Ciardi M, Galán A, Ballester P. Tetra-phosphonate calix[4]pyrrole cavitands as multitopic receptors for the recognition of ion pairs. J. Am. Chem. Soc. 2015;137:2047–2055. doi: 10.1021/ja512590j. PubMed DOI
Ghang Y-J, et al. Selective cavitand-mediated endocytosis of targeted imaging agents into live cells. J. Am. Chem. Soc. 2013;135:7090–7093. doi: 10.1021/ja401273g. PubMed DOI PMC
Javor S, Rebek J. Activation of a water-soluble resorcinarene cavitand at the water–phosphocholine micelle interface. J. Am. Chem. Soc. 2011;133:17473–17478. doi: 10.1021/ja2073774. PubMed DOI
Hof F, Trembleau L, Ullrich EC, Rebek J., Jr. Acetylcholine recognition by a deep, biomimetic pocket. Angew Chem. Int. Ed. 2003;42:3150–3153. doi: 10.1002/anie.200351174. PubMed DOI
Ballester P, Shivanyuk A, Far AR, Rebek J., Jr. A synthetic receptor for choline and carnitine. J. Am. Chem. Soc. 2002;124:14014–14016. doi: 10.1021/ja0282689. PubMed DOI
Biros SM, Ullrich EC, Hof F, Trembleau L, Rebek JJrJ. Kinetically stable complexes in water: the role of hydration and hydrophobicity. J. Am. Chem. Soc. 2004;126:2870–2876. doi: 10.1021/ja038823m. PubMed DOI
Kang SO, Begum RA, Bowman-James K. Amide-based ligands for anion coordination. Angew Chem. Int. Ed. 2006;45:7882–7894. doi: 10.1002/anie.200602006. PubMed DOI
Bowman-James, K., Bianchi, A. & García-España, E. (eds) Anion Coordination Chemistry (Wiley-VCH, New York, 2012).
Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of supramolecular anion recognition. Chem. Rev. 2015;115:8038–8155. doi: 10.1021/acs.chemrev.5b00099. PubMed DOI
Gale PA, Quesada R. Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord. Chem. Rev. 2006;250:3219–3244. doi: 10.1016/j.ccr.2006.05.020. DOI
Li S, et al. A triple anion helicate assembled from a bis(biurea) ligand and phosphate ions. Angew Chem. Int. Ed. 2011;50:5721–5724. doi: 10.1002/anie.201180593. PubMed DOI
Wu B, et al. The effect of the spacer of bis(biurea) ligands on the structure of A2L3-type (A=anion) phosphate complexes. Chem. Eur. J. 2015;21:2588–2593. doi: 10.1002/chem.201405235. PubMed DOI
Yang D, et al. Encapsulation of halocarbons in a tetrahedral anion cage. Angew Chem. Int. Ed. 2015;54:8658–8661. doi: 10.1002/anie.201502399. PubMed DOI
Wu B, et al. Tetrahedral anion cage: self-assembly of a (PO4)4L4 complex from a tris(bisurea) ligand. Angew Chem. Int. Ed. 2013;52:5096–5100. doi: 10.1002/anie.201209930. PubMed DOI
Jia C, Zuo W, Zhang D, Yang X-J, Wu B. Anion recognition by oligo-(thio)urea-based receptors. Chem. Commun. 2016;52:9614–9627. doi: 10.1039/C6CC03761E. PubMed DOI
Jia C, et al. Highly efficient extraction of sulfate with a tripodal hexa-urea receptor. Angew Chem. Int. Ed. 2011;50:486–490. doi: 10.1002/anie.201004461. PubMed DOI
Zhao J, et al. Anion coordination-induced turn-on fluorescence of an oligourea-functionalized tetraphenylethene in a wide concentration range. Angew Chem. Int. Ed. 2014;53:632–6636. doi: 10.1002/anie.201308780. PubMed DOI
Hof F. Host–guest chemistry that directly targets lysine methylation: synthetic host molecules as alternatives to bio-reagents. Chem. Commun. 2016;66:10093–10108. doi: 10.1039/C6CC04771H. PubMed DOI
Rizzuto FJ, Wu W-Y, Ronson TK, Nitschke JR. Peripheral templation generates an MII6L4 guest-binding capsule. Angew Chem. Int. Ed. 2016;55:7958–7962. doi: 10.1002/anie.201602135. PubMed DOI PMC
Hynes MJ. EQNMR: a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J. Chem. Soc. Dalton Trans. 1993;0:311–312. doi: 10.1039/dt9930000311. DOI
Korbakov N, et al. Acetylcholine detection at micromolar concentrations with the use of an artificial receptor-based fluorescence switch. Langmuir. 2008;24:2580–2587. doi: 10.1021/la703010z. PubMed DOI
Kuzmič P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 1996;237:260–273. doi: 10.1006/abio.1996.0238. PubMed DOI
Minaker SA, Daze KD, Ma MCF, Hof F. Antibody-free reading of the histone code using a simple chemical sensor array. J. Am. Chem. Soc. 2012;134:11674–11680. doi: 10.1021/ja303465x. PubMed DOI
Guo D-S, Uzunova VD, Su X, Liu Y, Nau WM. Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem. Sci. 2011;2:1722–1734. doi: 10.1039/c1sc00231g. DOI
Hennig A, Bakirci H, Nau WM. Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat. Methods. 2007;4:629–632. doi: 10.1038/nmeth1064. PubMed DOI
Nau WM, Ghale G, Hennig A, Bakirci H, Bailey DM. Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. J. Am. Chem. Soc. 2009;131:11558–11570. doi: 10.1021/ja904165c. PubMed DOI
Koh KN, Araki K, Ikeda A, Otsuka H, Shinkai S. Reinvestigation of calixarene-based artificial-signaling acetylcholine receptors useful in neutral aqueous (water/methanol) solution. J. Am. Chem. Soc. 1996;118:755–758. doi: 10.1021/ja951488k. DOI
Shiraishi Y, Miyamoto R, Hirai T. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer. Langmuir. 2008;24:4273–4279. doi: 10.1021/la703890n. PubMed DOI
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Hostaš J, et al. A nexus between theory and experiment: non-empirical quantum mechanical computational methodology applied to cucurbit[n]uril-guest binding interactions. Chem. Eur. J. 2016;22:17226–17238. doi: 10.1002/chem.201601833. PubMed DOI
Rai SK, et al. Experimental and theoretical study for the assessment of the conformational stability of polymethylene-bridged heteroaromatic dimers: a case of unprecedented folding. Cryst. Growth Des. 2016;16:1176–1180. doi: 10.1021/acs.cgd.5b01807. DOI