Magnetic Poly(N-isopropylacrylamide) Nanocomposites: Effect of Preparation Method on Antibacterial Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
29052060
PubMed Central
PMC5648729
DOI
10.1186/s11671-017-2341-0
PII: 10.1186/s11671-017-2341-0
Knihovny.cz E-zdroje
- Klíčová slova
- Bio-application, Escherichia coli, Magnetic poly(N-isopropylacrylamide), PNIPAAm, Staphylococcus aureus,
- Publikační typ
- časopisecké články MeSH
The most challenging task in the preparation of magnetic poly(N-isopropylacrylamide) (Fe3O4-PNIPAAm) nanocomposites for bio-applications is to maximise their reactivity and stability. Emulsion polymerisation, in situ precipitation and physical addition were used to produce Fe3O4-PNIPAAm-1, Fe3O4-PNIPAAm-2 and Fe3O4-PNIPAAm-3, respectively. Their properties were characterised using scanning electron microscopy (morphology), zeta-potential (surface charge), thermogravimetric analysis (stability), vibrating sample magnetometry (magnetisation) and dynamic light scattering. Moreover, we investigated the antibacterial effect of each nanocomposite against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Both Fe3O4-PNIPAAm-1 and Fe3O4-PNIPAAm-2 nanocomposites displayed high thermal stability, zeta potential and magnetisation values, suggesting stable colloidal systems. Overall, the presence of Fe3O4-PNIPAAm nanocomposites, even at lower concentrations, caused significant damage to both E. coli and S. aureus DNA and led to a decrease in cell viability. Fe3O4-PNIPAAm-1 displayed a stronger antimicrobial effect against both bacterial strains than Fe3O4-PNIPAAm-2 and Fe3O4-PNIPAAm-3. Staphylococcus aureus was more sensitive than E. coli to all three magnetic PNIPAAm nanocomposites.
Zobrazit více v PubMed
Schwall CT, Banerjee I a. Micro- and nanoscale hydrogel systems for drug delivery and tissue engineering. Materials. 2009;2:577–612. doi: 10.3390/ma2020577. DOI
Hu X, Hao X, Wu Y, et al. Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J Mater Chem B. 2013;1:1109–1118. doi: 10.1039/c2tb00223j. PubMed DOI PMC
Cooperstein MA, Canavan HE. Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases. 2013;8:19. doi: 10.1186/1559-4106-8-19. PubMed DOI PMC
Philippova O, Barabanova A, Molchanov V, Khokhlov A. Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J. 2011;47:542–559. doi: 10.1016/j.eurpolymj.2010.11.006. DOI
Elaissari A. Magnetic latex particles in nanobiotechnologies for biomedical diagnostic applications: state of the art. Macromol Symp. 2009;281:14–19. doi: 10.1002/masy.200950702. DOI
Lee C-F, Lin C-C, Chien C-A, Chiu W-Y. Thermosensitive and control release behavior of poly(N-isopropylacrylamide-co-acrylic acid)/nano-Fe3O4 magnetic composite latex particle that is synthesized by a novel method. Eur Polym J. 2008;44:2768–2776. doi: 10.1016/j.eurpolymj.2008.07.001. DOI
Afrassiabi A, Hoffman AS, Cadwell LA. Effect of temperature on the release rate of biomolecules from thermally reversible hydrogels. J Memb Sci. 1987;33:191–200. doi: 10.1016/S0376-7388(00)80377-4. DOI
Macková H, Horák D. Effects of the reaction parameters on the properties of thermosensitive poly(N-isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization. J Polym Sci Part A Polym Chem. 2006;44:968–982. doi: 10.1002/pola.21223. DOI
Macková H, Králová D, Horák D (2009) Magnetic poly(N-isopropylacrylamide) microspheres by dispersion and inverse emulsion polymerization. J Polym Sci 47:4289–4301
Mu J, Zheng S. Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels. J Colloid Interface Sci. 2007;307:377–385. doi: 10.1016/j.jcis.2006.12.014. PubMed DOI
Zhang X, Zhou L, Zhang X, Dai H. Synthesis and solution properties of temperature-sensitive copolymers based on NIPAM. J Appl Phys. 2009;113:1763–1772.
Hoare T, Timko BP, Santamaria J, et al. Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett. 2011;11:1395–1400. doi: 10.1021/nl200494t. PubMed DOI PMC
Dionigi C, Lungaro L, Goranov V, et al. Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules. J Mater Sci Mater Med. 2014;25:2365–2371. doi: 10.1007/s10856-014-5159-7. PubMed DOI
Balasubramaniam S, Pothayee N, Lin Y, et al. Poly(N-isopropylacrylamide)-coated superparamagnetic iron oxide nanoparticles: relaxometric and fluorescence behavior correlate to temperature-dependent aggregation. Chem Mater. 2011;23:3348–3356. doi: 10.1021/cm2009048. DOI
Singh NP, Stephens RE, Singh H, Lai H. Visual quantification of DNA double-strand breaks in bacteria. Mutat Res - Fundam Mol Mech Mutagen. 1999;429:159–168. doi: 10.1016/S0027-5107(99)00124-4. PubMed DOI
Singh NP, Stephens RE. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res. 1997;383:167–175. doi: 10.1016/S0921-8777(96)00056-0. PubMed DOI
Darwish MSA, Nguyen NHA, Ševcu A, Stibor I (2015) Functionalized magnetic nanoparticles and their effect on Escherichia coli and Staphylococcus aureus. J Nanomater 2015. doi 10.1155/2015/416012.
Darwish MSA, Nguyen NHA, Ševců A, et al. Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia. Mater Sci Eng C. 2016;63:88–95. doi: 10.1016/j.msec.2016.02.052. PubMed DOI
Lee Y, Lee J, Bae CJ, et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater. 2005;15:503–509. doi: 10.1002/adfm.200400187. DOI
Wormuth K. Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci. 2001;241:366–377. doi: 10.1006/jcis.2001.7762. DOI
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7:144. doi: 10.1186/1556-276X-7-144. PubMed DOI PMC
Kurzhals S, Zirbs R, Reimhult E. Synthesis and magneto-thermal actuation of iron oxide core-PNIPAM shell nanoparticles. ACS Appl Mater Interfaces. 2015;7:19342–19352. doi: 10.1021/acsami.5b05459. PubMed DOI PMC
Yu Q, Cho J, Shivapooja P, et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces. 2013;5:9295–9304. doi: 10.1021/am4022279. PubMed DOI
Schwartz VB, Thétiot F, Ritz S, et al. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(N-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater. 2012;22:2376–2386. doi: 10.1002/adfm.201102980. DOI
Spasojević J, Radosavljević A, Krstić J, et al. Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J. 2015;69:168–185. doi: 10.1016/j.eurpolymj.2015.06.008. DOI
Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63. doi: 10.1016/j.ijfoodmicro.2010.09.012. PubMed DOI
Fajaroh F, Setyawan H, Widiyastuti W, Winardi S. Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv Powder Technol. 2012;23:328–333. doi: 10.1016/j.apt.2011.04.007. DOI
Akbarzadeh A, Samiei, M, Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144 PubMed PMC
Jaiswal MK, De M, Chou SS, et al. Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces. 2014;6:6237–6247. doi: 10.1021/am501067j. PubMed DOI PMC
Tamarit J, Cabiscol E, Joaquim R. (1998) Identification of the Major Oxidatively Damaged Proteins in Escherichia coli Cells Exposed to Oxidative Stress. J Biol Chem 273:3027–3032 PubMed
Chien CC, Lin BC, Wu CH. Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp. Biochem Eng J. 2013;78:132–137. doi: 10.1016/j.bej.2013.01.014. DOI
Mahmoudi M, Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano. 2012;6:2656–2664. doi: 10.1021/nn300042m. PubMed DOI
Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272:19095–19098. doi: 10.1074/jbc.272.31.19095. PubMed DOI
Ševců A, El-Temsah YS, Joner EJ, Černík M. Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ. 2011;26:271–281. doi: 10.1264/jsme2.ME11126. PubMed DOI
Auffan M, Decome L, Rose J, et al. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol. 2006;40:4367–4373. doi: 10.1021/es060691k. PubMed DOI