Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO 1201
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/01.0005
Ministerstvo Školství, Mládeže a Tělovýchovy
SGS 21176/115
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29796771
PubMed Central
PMC5966349
DOI
10.1186/s11671-018-2575-5
PII: 10.1186/s11671-018-2575-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biological effect, Chlamydomonas reinhardtii, Green chemistry, Metal nanoparticles,
- Publikační typ
- časopisecké články MeSH
Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga (Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll (Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.
Zobrazit více v PubMed
You J, Meng L, Song T-B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol. 2015;11:1–8. doi: 10.1038/nnano.2015.230. PubMed DOI
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:1–15. doi: 10.1155/2013/942916. PubMed DOI PMC
Dizaj SM, Lotfipour F, Barzegar-Jalali M, et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI
Nguyen NHA, Darwish MSA, Stibor I, et al. Magnetic poly(N-isopropylacrylamide) nanocomposites: effect of preparation method on antibacterial properties. Nanoscale Res Lett. 2017;12:571. doi: 10.1186/s11671-017-2341-0. PubMed DOI PMC
Patel K, Kapoor S, Dave DP, Mukherjee T. Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method. J Chem Sci. 2005;117:311–316. doi: 10.1007/BF02708443. DOI
Wiley B, Sun Y, Mayers B, Xia Y. Shape-controlled synthesis of metal nanostructures: the case of silver. Chem - A Eur J. 2005;11:454–463. doi: 10.1002/chem.200400927. PubMed DOI
Evanoff D, et al. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B. 2004;108:13957–13962. doi: 10.1021/jp0475640. PubMed DOI
Merga G, Wilson R, Lynn G, et al. Redox catalysis on “naked” silver nanoparticles. J Phys Chem C. 2007;111:12220–12226. doi: 10.1021/jp074257w. DOI
Shah M, Badwaik V, Kherde Y, et al. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci. 2014;19:1320–1344. doi: 10.2741/4284. PubMed DOI
Ngo VKT, Nguyen DG, Huynh TP, Lam QV. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia coli O157:H7 bacteria. Adv Nat Sci Nanosci Nanotechnol. 2016;7:1–9.
Saldan I, Semenyuk Y, Marchuk I, Reshetnyak O. Chemical synthesis and application of palladium nanoparticles. J Mater Sci. 2015;50:2337–2354. doi: 10.1007/s10853-014-8802-2. DOI
Siavash I. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI
Padil VVT, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine. 2013;8:889–898. PubMed PMC
Shaik S, Kummara MR, Poluru S, et al. A green approach to synthesize silver nanoparticles in starch-co-poly(acrylamide) hydrogels by tridax procumbens leaf extract and their antibacterial activity. Int J Carbohydr Chem. 2013;2013:1–10. doi: 10.1155/2013/539636. DOI
Gurunathan S, Raman J, Abd Malek SN, et al. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine. 2013;8:4399–4413. PubMed PMC
Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125:13940–13941. doi: 10.1021/ja029267j. PubMed DOI
Regiel-Futyra A, Kus-Lis̈kiewicz M, Sebastian V, et al. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces. 2015;7:1087–1099. doi: 10.1021/am508094e. PubMed DOI PMC
Poguberović SS, Krčmar DM, Maletić SP, et al. Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng. 2016;90:42–49. doi: 10.1016/j.ecoleng.2016.01.083. PubMed DOI
Falcaro P, Ricco R, Yazdi A, et al. Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev. 2016;307:237–254. doi: 10.1016/j.ccr.2015.08.002. DOI
Mukherjee S, Chowdhury D, Kotcherlakota R, et al. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system) Theranostics. 2014;4:316–335. doi: 10.7150/thno.7819. PubMed DOI PMC
Weil M, Meißner T, Busch W, et al. The oxidized state of the nanocomposite Carbo-Iron® causes no adverse effects on growth, survival and differential gene expression in zebrafish. Sci Total Environ. 2015;530–531:198–208. doi: 10.1016/j.scitotenv.2015.05.087. PubMed DOI
Meng M, He H, Xiao J, et al. Controllable in situ synthesis of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application. J Colloid Interface Sci. 2016;461:369–375. doi: 10.1016/j.jcis.2015.09.038. PubMed DOI
Dolina J, Dvorak L, Lederer T, et al. Characterisation of morphological, antimicrobial and leaching properties of in situ prepared polyurethane nanofibres doped with silver behenate. RSC Adv. 2016;6:23816–23826. doi: 10.1039/C6RA03614G. DOI
Bansal A, Verma S. Searching for alternative plasmonic materials for specific applications. Indian J Mater Sci. 2014;2014:1–10. doi: 10.1155/2014/897125. DOI
Olajire AA, Kareem A, Olaleke A. Green synthesis of bimetallic Pt@Cu nanostructures for catalytic oxidative desulfurization of model oil. J Nanostructure Chem. 2017;7:159–170. doi: 10.1007/s40097-017-0223-8. DOI
de Vries JG, de Vries A, Tucker CE, Miller JA (2010) Palladium catalysis in the production of pharmaceuticals. Chem Technol. 33:125–130.
Gopidas KR, Whitesell JK, Fox MA. Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Lett. 2003;3:1757–1760. doi: 10.1021/nl0348490. DOI
Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5:12293–12299. doi: 10.1039/C4RA12163E. DOI
Zhang W, Wang C-B, Lien H-L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today. 1998;40:387–395. doi: 10.1016/S0920-5861(98)00067-4. DOI
Sun H, Zhang YY, Si SH, et al. Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water. Sensors Actuators B Chem. 2005;108:925–932. doi: 10.1016/j.snb.2004.12.120. DOI
Li H, Wang Q, Xu J, et al. A novel nano-au-assembled amperometric SO2 gas sensor: preparation, characterization and sensing behavior. Sensors Actuators B Chem. 2002;87:18–24. doi: 10.1016/S0925-4005(02)00189-2. DOI
Gottschalk F, Sondere T, Schols R, Nowack B. Modeled environmental concentrations of engineered nanomaterials for different regions. Environ Sci Technol. 2009;43:9216–9222. doi: 10.1021/es9015553. PubMed DOI
Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monit. 2011;13:1145–1155. doi: 10.1039/c0em00547a. PubMed DOI
Mueller NC, Nowack B. Exposure modelling of engineered nanoparticles in the environment. Environ Sci Technol. 2008;42:44447–44453. doi: 10.1021/es7029637. PubMed DOI
Wigginton NS, Haus KL, Hochella MF. Aquatic environmental nanoparticles. J Environ Monit. 2007;9:1306–1316. doi: 10.1039/b712709j. PubMed DOI
von Moos N, Maillard L, Slaveykova VI. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat Toxicol. 2015;161:267–275. doi: 10.1016/j.aquatox.2015.02.010. PubMed DOI
Burchardt AD, Carvalho RN, Valente A, et al. Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp. Environ Sci Technol. 2012;46:11336–11344. doi: 10.1021/es300989e. PubMed DOI
Oukarroum A, Barhoumi L, Pirastru L, Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem. 2013;32:902–907. doi: 10.1002/etc.2131. PubMed DOI
Książyk M, Asztemborska M, Stęborowski R, Bystrzejewska-Piotrowska G. Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bull Environ Contam Toxicol. 2015;94:554–558. doi: 10.1007/s00128-015-1505-9. PubMed DOI PMC
Sørensen SN, Engelbrekt C, Lützhøft HH, et al. A multi-method approach for disclosing algal toxicity of platinum nanoparticles. Environ Sci Technol. 2016;19:10635–10643. doi: 10.1021/acs.est.6b01072. PubMed DOI
Adams CP, Walker KA, Obare SO, Docherty KM. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One. 2014;9:e85981. doi: 10.1371/journal.pone.0085981. PubMed DOI PMC
Auffan M, Rose J, Wiesner MR, Bottero JY. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut. 2009;157:1127–1133. doi: 10.1016/j.envpol.2008.10.002. PubMed DOI
Joubert Y, Pan JF, Buffet PE, et al. Subcellular localization of gold nanoparticles in the estuarine bivalve Scrobicularia plana after exposure through the water. Gold Bull. 2013;46:47–56. doi: 10.1007/s13404-013-0080-2. DOI
Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology. 2011;9:34. doi: 10.1186/1477-3155-9-34. PubMed DOI PMC
Patricks VO. Single and mixture toxicity of gold nanoparticles and gold(III) to Enchytraeus buchholzi (Oligochaeta) Appl Soil Ecol. 2014;84:231–234. doi: 10.1016/j.apsoil.2014.08.007. DOI
Gerber A, Bundschuh M, Klingelhofer D, Groneberg DA. Gold nanoparticles: recent aspects for human toxicology. J Occup Med Toxicol. 2013;8(32):1–6. PubMed PMC
Cheloni G, Marti E, Slaveykova VI. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol. 2016;170:120–128. doi: 10.1016/j.aquatox.2015.11.018. PubMed DOI
Aruoja V, Dubourguier HC, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 2009;407:1461–1468. doi: 10.1016/j.scitotenv.2008.10.053. PubMed DOI
Regier N, Cosio C, von Moos N, Slaveykova VI. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere. 2015;128:56–61. doi: 10.1016/j.chemosphere.2014.12.078. PubMed DOI
Grosell M, Blanchard J, Brix KV, Gerdes R. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol. 2007;84:162–172. doi: 10.1016/j.aquatox.2007.03.026. PubMed DOI
Liu G, Liu Z, Li N, et al. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl Mater Interfaces. 2014;6:20452–20463. doi: 10.1021/am506026e. PubMed DOI
Oukarroum A, Bras S, Perreault F, Popovic R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf. 2012;78:80–85. doi: 10.1016/j.ecoenv.2011.11.012. PubMed DOI
Kasner E, Hunter CA, Ph D, et al. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Env Pollut. 2013;70:646–656. PubMed PMC
Ševců A, El-Temsah YS, Joner EJ, Černík M. Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ. 2011;26:271–281. doi: 10.1264/jsme2.ME11126. PubMed DOI
von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae—state of the art and knowledge gaps. Nanotoxicology. 2014;8:605–630. doi: 10.3109/17435390.2013.809810. PubMed DOI
Jessop PG, Trakhtenberg S, Warner J (2009) The twelve principles of green chemistry. in Innovations in Industrial and Engineering Chemistry Vol. 1000, ACS Symposium Series Ch. 12:401–436.
Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev. 2009;39:301–312. doi: 10.1039/B918763B. PubMed DOI
Poliakoff M, Fitzpatrick JM, Farren TR et al (2002) Green chemistry: science and politics of change. Science. 297:807–810. PubMed
Varma RS. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027. doi: 10.1039/c3gc42640h. DOI
Padil VVT, Saravanan P, Sreedhar B, et al. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium) Colloids Surfaces B Biointerfaces. 2011;83:291–298. doi: 10.1016/j.colsurfb.2010.11.035. PubMed DOI
Virkutyte J, Varma RS. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci. 2011;2:837. doi: 10.1039/C0SC00338G. DOI
Cinelli M, Coles SR, Nadagouda MN, et al. A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chem. 2015;17:2825–2839. doi: 10.1039/C4GC02088J. DOI
Verbeken D, Dierckx S, Dewettinck K, et al. Re-evaluation of karaya gum (E 416) as a food additive. EFSA J. 2003;14:10–21.
Bhat RV, Sesikeran B, Reddy CVK, Radhaiah G. Toxicological evaluation of gum karaya in Rhesus monkeys. J Food Safety. 1987;8:161–166. doi: 10.1111/j.1745-4565.1987.tb00562.x. DOI
Mortensen A, Aguilar F, Crebelli R, et al. Re-evaluation of karaya gum (E 416) as a food additive. EFSA J. 2016;14(12):4598.
Padil VVT, Wacławek S, Černík M. Green synthesis: nanoparticles and nanofibres based on tree gums for environmental applications. Ecol Chem Eng S. 2016;23:533–557.
Padil VVT, Černík M. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. J Hazard Mater. 2015;287:102–110. doi: 10.1016/j.jhazmat.2014.12.042. PubMed DOI
Ma H, Wallis LK, Diamond S, et al. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut. 2014;193:165–172. doi: 10.1016/j.envpol.2014.06.027. PubMed DOI
Aruoja V, Pokhrel S, Sihtmäe M, et al. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano. 2015;2:630–644. doi: 10.1039/C5EN00057B. DOI
Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J Exp Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI
Fabrega J, Luoma SN, Tyler CR, et al. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 2011;37:517–531. doi: 10.1016/j.envint.2010.10.012. PubMed DOI
Moreno-Garrido I, Pérez S, Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. Mar Environ Res. 2015;111:60–73. doi: 10.1016/j.marenvres.2015.05.008. PubMed DOI
Rauch S, Morrison GM. Environmental relevance of the platinum-group elements. Elements. 2008;4:259–263. doi: 10.2113/GSELEMENTS.4.4.259. DOI
Griffitt RJ, Luo J, Gao J, et al. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem. 2008;27:1972–1978. doi: 10.1897/08-002.1. PubMed DOI
Ivask A, Kurvet I, Kasemets K, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One. 2014;9:e102108. doi: 10.1371/journal.pone.0102108. PubMed DOI PMC
Iswarya V, Manivannan J, De A, et al. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res. 2016;23:4844–4858. doi: 10.1007/s11356-015-5683-0. PubMed DOI
von Moos N, Bowen P, Slaveykova VI. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ Sci Nano. 2014;1:214. doi: 10.1039/c3en00054k. DOI
Vannini C, Domingo G, Marsoni M, et al. Physiological and molecular effects associated with palladium treatment in Pseudokirchneriella subcapitata. Aquat Toxicol. 2011;102:104–113. doi: 10.1016/j.aquatox.2011.01.002. PubMed DOI
Klaine SJ, Alvarez PJJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27:1825–1851. doi: 10.1897/08-090.1. PubMed DOI
Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42:8959–8964. doi: 10.1021/es801785m. PubMed DOI
Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181–1200. doi: 10.1007/s00204-013-1079-4. PubMed DOI PMC
Zemke-White WL, Clements KD, Harris PJ. Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Bio Ecol. 2000;245:57–68. doi: 10.1016/S0022-0981(99)00151-3. DOI
Bhatt I, Tripathi BN. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. 2011;82:308–317. doi: 10.1016/j.chemosphere.2010.10.011. PubMed DOI
Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small. 2009;5:1897–1910. doi: 10.1002/smll.200801716. PubMed DOI
Nam S-H, Kwak JII, An Y-J. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses. Sci Rep. 2018;8:292. doi: 10.1038/s41598-017-18680-5. PubMed DOI PMC
Suppi S, Kasemets K, Ivask A, et al. A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. J Hazard Mater. 2015;286:75–84. doi: 10.1016/j.jhazmat.2014.12.027. PubMed DOI
Navarro E, Wagner B, Odzak N, et al. Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environ Sci Technol. 2015;49:8041–8047. doi: 10.1021/acs.est.5b01089. PubMed DOI
Piccapietra F, Allué CG, Sigg L, Behra R. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol. 2012;46:7390–7397. doi: 10.1021/es300734m. PubMed DOI
Kukumagi M, Ostonen I, Kupper P, et al. The effects of elevated atmospheric humidity on soil respiration components in a young silver birch forest. Agric For Meteorol. 2014;194:167–174. doi: 10.1016/j.agrformet.2014.04.003. DOI
Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386. doi: 10.1007/s10646-008-0214-0. PubMed DOI
Melegari SP, Perreault F, Costa RHR, et al. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol. 2013;142–143:431–440. doi: 10.1016/j.aquatox.2013.09.015. PubMed DOI
Behra R. Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii. Aquat Geochemistry. 2015;21:331–342. doi: 10.1007/s10498-015-9255-1. DOI