Force field parametrization of hydrogenoxalate and oxalate anions with scaled charges

. 2017 Oct 28 ; 23 (11) : 327. [epub] 20171028

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29080940
Odkazy

PubMed 29080940
DOI 10.1007/s00894-017-3490-x
PII: 10.1007/s00894-017-3490-x
Knihovny.cz E-zdroje

Models of the hydrogenoxalate (bioxalate, charge -1) and oxalate (charge -2) anions were developed for classical molecular dynamics (CMD) simulations and parametrized against ab initio molecular dynamics (AIMD) data from our previous study (Kroutil et al. (2016) J Mol Model 22:210). The interactions of the anions with water were described using charges scaled according to the electronic continuum correction approach with rescaling of nonbonded parameters (ECCR), and those descriptions of anion interactions were found to agree well with relevant AIMD and experimental results. The models with full RESP charges showed excessively strong electrostatic interactions between the solute and water molecules, leading to an overstructured solvation shell around the anions and thus to a diffusion coefficient that was much too low. The effect of charge scaling was more evident for the oxalate dianion than for the hydrogenoxalate anion. Our work provides CMD models for ions of oxalic acid and extends previous studies that showed the importance of ECCR for modeling divalent ions and ions of organic compounds. Graphical abstract The radial distribution function between a water oxygen (Ow) and an oxygen of the oxalate dianion (Ox) significantly improved when scaled charges were applied to the anion.

Zobrazit více v PubMed

J Am Chem Soc. 2004 Sep 22;126(37):11691-8 PubMed

Phys Chem Chem Phys. 2011 Feb 21;13(7):2613-26 PubMed

J Chem Phys. 2007 Sep 21;127(11):114105 PubMed

J Phys Chem B. 2013 Feb 14;117(6):1844-8 PubMed

J Mol Graph Model. 2006 Oct;25(2):247-60 PubMed

Phys Chem Chem Phys. 2013 Jul 14;15(26):10942-51 PubMed

Chem Rev. 2000 Jun 14;100(6):2013-46 PubMed

J Phys Chem Lett. 2014 Nov 20;5(22):3964-9 PubMed

J Phys Chem B. 2014 Jul 17;118(28):7902-9 PubMed

J Endourol. 2013 Dec;27(12):1487-92 PubMed

Phys Chem Chem Phys. 2011 Nov 28;13(44):19830-9 PubMed

BMC Res Notes. 2012 Jul 23;5:367 PubMed

J Phys Chem B. 2012 Jul 19;116(28):8145-53 PubMed

J Comput Chem. 2011 Dec;32(16):3505-19 PubMed

J Chem Phys. 2011 Nov 28;135(20):204502 PubMed

Chemphyschem. 2010 Dec 17;11(18):3971-9 PubMed

Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 PubMed

J Chem Phys. 2010 Apr 21;132(15):154104 PubMed

Langmuir. 2013 Feb 12;29(6):1754-65 PubMed

J Chem Theory Comput. 2012 Sep 11;8(9):3207-3216 PubMed

J Mol Model. 2016 Sep;22(9):210 PubMed

Phys Rev B Condens Matter. 1996 Jul 15;54(3):1703-1710 PubMed

Scanning Microsc. 1993 Mar;7(1):431-41 PubMed

J Phys Chem B. 2016 Mar 3;120(8):1454-60 PubMed

J Chem Theory Comput. 2010;6(5):1498-508 PubMed

Spectrochim Acta A Mol Biomol Spectrosc. 2002 Jun;58(8):1731-46 PubMed

J Phys Chem B. 2016 Apr 14;120(14):3560-8 PubMed

J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed

J Phys Chem A. 2012 Nov 29;116(47):11601-17 PubMed

J Comput Chem. 2012 Jan 15;33(2):189-202 PubMed

J Phys Chem Lett. 2014 Jul 3;5(13):2235-40 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...