PURA syndrome: clinical delineation and genotype-phenotype study in 32 individuals with review of published literature
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
Grant support
Wellcome Trust - United Kingdom
MR/M01326X/1
Medical Research Council - United Kingdom
MR/M014568/1
Medical Research Council - United Kingdom
RP-2016-07-011
Department of Health - United Kingdom
PubMed
29097605
PubMed Central
PMC5800346
DOI
10.1136/jmedgenet-2017-104946
PII: jmedgenet-2017-104946
Knihovny.cz E-resources
- Keywords
- PURA syndrome, epilepsy and seizures, hypotonia, intellectual disability, neonatal problems,
- MeSH
- Eye Abnormalities genetics MeSH
- DNA-Binding Proteins chemistry genetics MeSH
- Genetic Association Studies MeSH
- Humans MeSH
- Intellectual Disability genetics MeSH
- Mutation * MeSH
- Infant, Newborn MeSH
- Face abnormalities MeSH
- Drosophila Proteins chemistry genetics MeSH
- Structural Homology, Protein MeSH
- Muscle Hypotonia etiology genetics MeSH
- Syndrome MeSH
- Pregnancy MeSH
- Transcription Factors chemistry genetics MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA-Binding Proteins MeSH
- Drosophila Proteins MeSH
- Pur-alpha protein, Drosophila MeSH Browser
- PURA protein, human MeSH Browser
- Transcription Factors MeSH
BACKGROUND: De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. OBJECTIVES: To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. METHODS: Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. RESULTS: We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. CONCLUSION: We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.
Academic Center for Epileptology Kempenhaeghe MUMC Maastricht The Netherlands
Department of Clinical Genetics Royal Devon and Exeter NHS Trust Exeter UK
Department of Clinical Genetics University Hospitals Bristol Bristol UK
Department of Engineering Science Institute of Biomedical Engineering University of Oxford Oxford UK
Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
Department of Neurology Boston Children's Hospital Boston Massachusetts USA
Department of Neurology Maastricht University Medical Center Maastricht The Netherlands
Department of Ophthalmology Southampton General Hospital Southampton UK
Department of Orthopaedics Royal Children's Hospital Melbourne Victoria Australia
Department of Pediatric Neurology Academic Medical Center Amsterdam The Netherlands
Department of Pediatrics Máxima Medisch Centrum Veldhoven The Netherlands
Department of Pediatrics Rijnstate Hospital Arnhem The Netherlands
Departmentof Paediatrics Genetics Service KK Women's and Children's Hospital Singapore
Genome Institute of Singapore Singapore Singapore
KK Research Laboratory KK Women's and Children's Hospital Singapore
National University Health Systems Cardiovascular Research Institute Singapore Singapore
North West Thames Regional Genetics Service London North West Healthcare NHS Trust London UK
PURA Syndrome Foundation Tulsa Oklahoma USA
Sanford Children's Hospital University of South Dakota Sioux Falls South Dakota USA
School for Mental Health and Neuroscience Maastricht University Maastricht The Netherlands
SW Thames Regional Genetics Service St George's University NHS Foundation Trust London UK
The Rina Mor Institute of Medical Genetics Holon Israel
Visual Geometry Group Department of Engineering Science University of Oxford Oxford UK
Wellcome Trust Sanger Institute Hinxton Cambridge UK
Wessex Clinical Genetics Service Princess Anne Hospital Southampton UK
See more in PubMed
Shimojima K, Isidor B, Le Caignec C, Kondo A, Sakata S, Ohno K, Yamamoto T. A new microdeletion syndrome of 5q31.3 characterized by severe developmental delays, distinctive facial features, and delayed myelination. Am J Med Genet A 2011;155A:732–6. 10.1002/ajmg.a.33891 PubMed DOI
Hosoki K, Ohta T, Natsume J, Imai S, Okumura A, Matsui T, Harada N, Bacino CA, Scaglia F, Jones JY, Niikawa N, Saitoh S. Clinical phenotype and candidate genes for the 5q31.3 microdeletion syndrome. Am J Med Genet A 2012;158A:1891–6. 10.1002/ajmg.a.35439 PubMed DOI
Rosenfeld JA, Drautz JM, Clericuzio CL, Cushing T, Raskin S, Martin J, Tervo RC, Pitarque JA, Nowak DM, Karolak JA, Lamb AN, Schultz RA, Ballif BC, Bejjani BA, Gajecka M, Shaffer LG. Deletions and duplications of developmental pathway genes in 5q31 contribute to abnormal phenotypes. Am J Med Genet A 2011;155A:1906–16. 10.1002/ajmg.a.34100 PubMed DOI
Brown N, Burgess T, Forbes R, McGillivray G, Kornberg A, Mandelstam S, Stark Z. 5q31.3 Microdeletion syndrome: clinical and molecular characterization of two further cases. Am J Med Genet A 2013;161A:2604–8. 10.1002/ajmg.a.36108 PubMed DOI
Bonaglia MC, Zanotta N, Giorda R, D’Angelo G, Zucca C. Long-term follow-up of a patient with 5q31.3 microdeletion syndrome and the smallest de novo 5q31.2q31.3 deletion involving PURA. Mol Cytogenet 2015;8:89 10.1186/s13039-015-0193-9 PubMed DOI PMC
Lalani SR, Zhang J, Schaaf CP, Brown CW, Magoulas P, Tsai AC, El-Gharbawy A, Wierenga KJ, Bartholomew D, Fong CT, Barbaro-Dieber T, Kukolich MK, Burrage LC, Austin E, Keller K, Pastore M, Fernandez F, Lotze T, Wilfong A, Purcarin G, Zhu W, Craigen WJ, McGuire M, Jain M, Cooney E, Azamian M, Bainbridge MN, Muzny DM, Boerwinkle E, Person RE, Niu Z, Eng CM, Lupski JR, Gibbs RA, Beaudet AL, Yang Y, Wang MC, Xia F. Mutations in PURA cause profound neonatal hypotonia, seizures, and encephalopathy in 5q31.3 microdeletion syndrome. Am J Hum Genet 2014;95:579–83. 10.1016/j.ajhg.2014.09.014 PubMed DOI PMC
Hunt D, Leventer RJ, Simons C, Taft R, Swoboda KJ, Gawne-Cain M, Magee AC, Turnpenny PD, Baralle D; DDD study. Whole exome sequencing in family trios reveals de novo mutations in PURA as a cause of severe neurodevelopmental delay and learning disability. J Med Genet 2014;51:806–13. 10.1136/jmedgenet-2014-102798 PubMed DOI PMC
Tanaka AJ, Bai R, Cho MT, Anyane-Yeboa K, Ahimaz P, Wilson AL, Kendall F, Hay B, Moss T, Nardini M, Bauer M, Retterer K, Juusola J, Chung WK. De novo mutations in PURA are associated with hypotonia and developmental delay. Cold Spring Harb Mol Case Stud 2015;1:a000356 10.1101/mcs.a000356 PubMed DOI PMC
Okamoto N, Nakao H, Niihori T, Aoki Y. Patient with a novel purine-rich element binding protein A mutation. Congenit Anom 2017;57:201–4. 10.1111/cga.12214 PubMed DOI
Rezkalla J, Von Wald T, Hansen KA. Premature Thelarche and the PURA Syndrome. Obstet Gynecol 2017;129:1037–9. 10.1097/AOG.0000000000002047 PubMed DOI
Graebsch A, Roche S, Niessing D. X-ray structure of Pur-alpha reveals a Whirly-like fold and an unusual nucleic-acid binding surface. Proc Natl Acad Sci U S A 2009;106:18521–6. 10.1073/pnas.0907990106 PubMed DOI PMC
Weber J, Bao H, Hartlmüller C, Wang Z, Windhager A, Janowski R, Madl T, Jin P, Niessing D. Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha. Elife 2016;5 10.7554/eLife.11297 PubMed DOI PMC
White MK, Johnson EM, Khalili K. Multiple roles for Puralpha in cellular and viral regulation. Cell Cycle 2009;8:414–20. 10.4161/cc.8.3.7585 PubMed DOI PMC
Yuan C, Li P, Guo S, Zhang B, Sun T, Cui J. The Role of Purα in Neuronal Development, the Progress in the Current Researches. J Neurol Neurosci 2016;7:5 10.21767/2171-6625.1000152 DOI
Hokkanen S, Feldmann HM, Ding H, Jung CK, Bojarski L, Renner-Müller I, Schüller U, Kretzschmar H, Wolf E, Herms J. Lack of Pur-alpha alters postnatal brain development and causes megalencephaly. Hum Mol Genet 2012;21:473–84. 10.1093/hmg/ddr476 PubMed DOI
Khalili K, Del Valle L, Muralidharan V, Gault WJ, Darbinian N, Otte J, Meier E, Johnson EM, Daniel DC, Kinoshita Y, Amini S, Gordon J. Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol Cell Biol 2003;23:6857–75. 10.1128/MCB.23.19.6857-6875.2003 PubMed DOI PMC
Barbe MF, Krueger JJ, Loomis R, Otte J, Gordon J. Memory deficits, gait ataxia and neuronal loss in the hippocampus and cerebellum in mice that are heterozygous for Pur-alpha. Neuroscience 2016;337:177–90. 10.1016/j.neuroscience.2016.09.018 PubMed DOI PMC
Ansari M, Poke G, Ferry Q, Williamson K, Aldridge R, Meynert AM, Bengani H, Chan CY, Kayserili H, Avci S, Hennekam RC, Lampe AK, Redeker E, Homfray T, Ross A, Falkenberg Smeland M, Mansour S, Parker MJ, Cook JA, Splitt M, Fisher RB, Fryer A, Magee AC, Wilkie A, Barnicoat A, Brady AF, Cooper NS, Mercer C, Deshpande C, Bennett CP, Pilz DT, Ruddy D, Cilliers D, Johnson DS, Josifova D, Rosser E, Thompson EM, Wakeling E, Kinning E, Stewart F, Flinter F, Girisha KM, Cox H, Firth HV, Kingston H, Wee JS, Hurst JA, Clayton-Smith J, Tolmie J, Vogt J, Tatton-Brown K, Chandler K, Prescott K, Wilson L, Behnam M, McEntagart M, Davidson R, Lynch SA, Sisodiya S, Mehta SG, McKee SA, Mohammed S, Holden S, Park SM, Holder SE, Harrison V, McConnell V, Lam WK, Green AJ, Donnai D, Bitner-Glindzicz M, Donnelly DE, Nellåker C, Taylor MS, FitzPatrick DR. Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J Med Genet 2014;51:659–68. 10.1136/jmedgenet-2014-102573 PubMed DOI PMC
Ferry Q, Steinberg J, Webber C, FitzPatrick DR, Ponting CP, Zisserman A, Nellåker C. Diagnostically relevant facial gestalt information from ordinary photos. Elife 2014;3:e02020 10.7554/eLife.02020 PubMed DOI PMC
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–58. 10.1038/nprot.2015.053 PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010;66:486–501. 10.1107/S0907444910007493 PubMed DOI PMC
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won H-H, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285–91. 10.1038/nature19057 PubMed DOI PMC
Eldomery MK, Coban-Akdemir Z, Harel T, Rosenfeld JA, Gambin T, Stray-Pedersen A, Küry S, Mercier S, Lessel D, Denecke J, Wiszniewski W, Penney S, Liu P, Bi W, Lalani SR, Schaaf CP, Wangler MF, Bacino CA, Lewis RA, Potocki L, Graham BH, Belmont JW, Scaglia F, Orange JS, Jhangiani SN, Chiang T, Doddapaneni H, Hu J, Muzny DM, Xia F, Beaudet AL, Boerwinkle E, Eng CM, Plon SE, Sutton VR, Gibbs RA, Posey JE, Yang Y, Lupski JR. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med 2017;9:26 10.1186/s13073-017-0412-6 PubMed DOI PMC