Recurrent EML4-NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
P30 CA013696
NCI NIH HHS - United States
PubMed
29099503
DOI
10.1038/modpathol.2017.127
PII: S0893-3952(22)01196-6
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Fibrosarcoma diagnosis genetics MeSH
- Oncogene Proteins, Fusion genetics MeSH
- Genetic Testing MeSH
- In Situ Hybridization, Fluorescence MeSH
- Carcinoma genetics MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Recurrence, Local genetics MeSH
- Nephroma, Mesoblastic congenital diagnosis genetics MeSH
- Adolescent MeSH
- Kidney Neoplasms congenital diagnosis genetics MeSH
- Breast Neoplasms genetics MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- ETS Translocation Variant 6 Protein MeSH
- Microtubule-Associated Proteins genetics MeSH
- Cell Cycle Proteins genetics MeSH
- Proto-Oncogene Proteins c-ets genetics MeSH
- Discoidin Domain Receptor 2 genetics MeSH
- Repressor Proteins genetics MeSH
- Sequence Analysis, RNA MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Serine Endopeptidases genetics MeSH
- Check Tag
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DDR2 protein, human MeSH Browser
- EML4 protein, human MeSH Browser
- Oncogene Proteins, Fusion MeSH
- Microtubule-Associated Proteins MeSH
- Cell Cycle Proteins MeSH
- Proto-Oncogene Proteins c-ets MeSH
- Discoidin Domain Receptor 2 MeSH
- Repressor Proteins MeSH
- Serine Endopeptidases MeSH
Infantile fibrosarcoma and congenital mesoblastic nephroma are tumors of infancy traditionally associated with the ETV6-NTRK3 gene fusion. However, a number of case reports have identified variant fusions in these tumors. In order to assess the frequency of variant NTRK3 fusions, and in particular whether the recently identified EML4-NTRK3 fusion is recurrent, 63 archival cases of infantile fibrosarcoma, congenital mesoblastic nephroma, mammary analog secretory carcinoma and secretory breast carcinoma (tumor types that are known to carry recurrent ETV6-NTRK3 fusions) were tested with NTRK3 break-apart FISH, EML4-NTRK3 dual fusion FISH, and targeted RNA sequencing. The EML4-NTRK3 fusion was identified in two cases of infantile fibrosarcoma (one of which was previously described), and in one case of congenital mesoblastic nephroma, demonstrating that the EML4-NTRK3 fusion is a recurrent genetic event in these related tumors. The growing spectrum of gene fusions associated with infantile fibrosarcoma and congenital mesoblastic nephroma along with the recent availability of targeted therapies directed toward inhibition of NTRK signaling argue for alternate testing strategies beyond ETV6 break-apart FISH. The use of either NTRK3 FISH or next-generation sequencing will expand the number of cases in which an oncogenic fusion is identified and facilitate optimal diagnosis and treatment for patients.
Department of Pathology Boston Children's Hospital and Harvard Medical School Boston MA USA
Department of Pathology Boston Children's Hospital Boston MA USA
Department of Pathology Brigham and Women's Hospital and Harvard Medical School Boston MA USA
Department of Pathology Charles University Faculty of Medicine in Plzen Plzen Czech Republic
Department of Pathology Massachusetts General Hospital and Harvard Medical School Boston MA USA
Department of Pathology University of Miami Miami FL USA
Department of Pediatrics Memorial Sloan Kettering Cancer Institute New York NY USA
See more in PubMed
J Biol Chem. 2004 Feb 20;279(8):6225-34 PubMed
Am J Surg Pathol. 2015 May;39(5):602-10 PubMed
Am J Surg Pathol. 2000 Jul;24(7):937-46 PubMed
J Pathol. 2012 Sep;228(1):119-30 PubMed
Am J Surg Pathol. 2017 Apr;41(4):446-457 PubMed
Mod Pathol. 2017 Aug;30(8):1086-1099 PubMed
Cancer. 1977 Oct;40(4):1711-21 PubMed
Nat Rev Cancer. 2007 Apr;7(4):233-45 PubMed
Am J Surg Pathol. 2016 Jan;40(1):3-13 PubMed
Am J Pathol. 1998 Nov;153(5):1451-8 PubMed
Cold Spring Harb Mol Case Stud. 2015 Oct;1(1):a000471 PubMed
Am J Clin Pathol. 2001 Mar;115(3):348-55 PubMed
J Pathol. 2001 Jan;193(1):88-94 PubMed
Mod Pathol. 2000 Jan;13(1):29-36 PubMed
Mod Pathol. 2016 Sep;29(9):985-95 PubMed
Cancer Cell. 2002 Nov;2(5):367-76 PubMed
Mod Pathol. 2001 Dec;14(12):1246-51 PubMed
J Natl Cancer Inst. 2015 Nov 12;108(1):null PubMed
Cancer Res. 1998 Nov 15;58(22):5046-8 PubMed
Nat Genet. 1998 Feb;18(2):184-7 PubMed
J Pediatr Surg. 1987 Jul;22(7):665-70 PubMed
Pediatr Pathol. 1994 Jan-Feb;14(1):133-50 PubMed
J Pediatr Hematol Oncol. 2002 Dec;24(9):722-6 PubMed
Cancer. 1976 Aug;38(2):729-39 PubMed
Med Pediatr Oncol. 1990;18(4):295-8 PubMed
Pediatr Blood Cancer. 2016 Aug;63(8):1468-70 PubMed
Cancer. 2014 Mar 15;120(6):799-807 PubMed
Cancer Res. 2008 Jul 1;68(13):4971-6 PubMed
Pediatrics. 2015 Jan;135(1):142-58 PubMed
Am J Surg Pathol. 2001 Nov;25(11):1461-4 PubMed
Prenat Diagn. 2008 Aug;28(8):773-5 PubMed
Cancer. 1985 Oct 1;56(7):1507-10 PubMed
J Clin Oncol. 2010 Jan 10;28(2):318-23 PubMed
Nature. 2007 Aug 2;448(7153):561-6 PubMed
Am J Surg Pathol. 2010 May;34(5):599-608 PubMed