Novel BRAF gene fusions and activating point mutations in spindle cell sarcomas with histologic overlap with infantile fibrosarcoma

. 2021 Aug ; 34 (8) : 1530-1540. [epub] 20210413

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33850302

Infantile fibrosarcoma (IFS)/cellular congenital mesoblastic nephroma (cCMN) commonly harbors the classic ETV6-NTRK3 translocation. However, there are recent reports of mesenchymal tumors with IFS-like morphology harboring fusions of other receptor tyrosine kinases or downstream effectors, including NTRK1/2/3, MET, RET, and RAF1 fusions as well as one prior series with BRAF fusions. Discovery of these additional molecular drivers contributes to a more integrated diagnostic approach and presents important targets for therapy. Here we report the clinicopathologic and molecular features of 14 BRAF-altered tumors, of which 5 had BRAF point mutations and 10 harbored one or more BRAF fusions. Of the BRAF fusion-positive tumors, one harbored two BRAF fusions (FOXN3-BRAF, TRIP11-BRAF) and another harbored three unique alternative splice variants of EPB41L2-BRAF. Tumors occurred in ten males and four females, aged from birth to 32 years (median 6 months). Twelve were soft tissue based; two were visceral including one located in the kidney (cCMN). All neoplasms demonstrated ovoid to short spindle cells most frequently arranged haphazardly or in intersecting fascicles, often with collagenized stroma and a chronic inflammatory infiltrate. No specific immunophenotype was observed; expression of CD34, S100, and SMA was variable. To date, this is the largest cohort of BRAF-altered spindle cell neoplasms with IFS-like morphology, including not only seven novel BRAF fusion partners but also the first description of oncogenic BRAF point mutations in these tumors.

Komentář v

PubMed

Zobrazit více v PubMed

Stout AP. Fibrosarcoma in infants and children. Cancer. 1962;15:1028–40. PubMed DOI

Chung EB, Enzinger FM. Infantile fibrosarcoma. Cancer. 1976;38:729–39. PubMed DOI

Speleman F, Dal Cin P, De Potter K, Laureys G, Roels HJ, Leroy J, et al. Cytogenetic investigation of a case of congenital fibrosarcoma. Cancer Genet Cytogenet. 1989;39:21–24. PubMed DOI

Mandahl N, Heim S, Rydholm A, Willen H, Mitelman F. Non-random numerical chromosome aberrations (+8, +11, +17, +20) in infantile fibrosarcoma (Letter). Cancer Genet Cytogenet. 1989;40:137–9. PubMed DOI

Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH. ETV6-NTRK3 gene fusions and Trisomy 11 establish a histologic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58:5046–8. PubMed

Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153:1451–8. PubMed DOI PMC

Argani P, Fritsch MK, Shuster AE, Perlman EJ, Coffin CM. Reduced sensitivity of paraffin-based RT-PCR assays for ETV6-NTRK3 fusion transcripts in morphologically defined infantile fibrosarcoma. Am J Surg Pathol. 2001;25:1461–4. PubMed DOI

Davis JL, Lockwood CM, Stohr B, Boecking C, Al-Ibraheemi A, DuBois SG, et al. Expanding the spectrum of pediatric NTRK-rearranged mesenchymal tumors. Am J Surg Pathol. 2019;43:435–45. PubMed DOI

Church AJ, Calicchio ML, Nardi V, Skalova A, Pinto A, Dillon DA, et al. Recurrent EML4-NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy. Mod Pathol. 2018;31:463–73. PubMed DOI

Davis JL, Lockwood CM, Albert CM, Tsuchiya K, Hawkins DS, Rudzinski ER. Infantile NTRK-associated mesenchymal tumors. Pediatr Dev Pathol. 2018;21:68–78. PubMed DOI

Coffin CM, Beadling C, Neff T, Corless CL, Davis JL. Infantile fibrosarcoma with a novel RAF1 rearrangement: The contemporary challenge of reconciling classic morphology with novel molecular genetics. Hum Pathol: Case Rep. 2020;22:200434.

Flucke U, van Noesel MM, Wijnen M, Zhang L, Chen CL, Sung YS, et al. TFG-MET fusion in an infantile spindle cell sarcoma with neural features. Genes Chromosomes Cancer. 2017;56:663–7. PubMed DOI PMC

Davis JL, Vargas SO, Rudzinski ER, Marti JML, Janeway K, Forrest S, et al. Recurrent RET gene fusions in paediatric spindle mesenchymal neoplasms. Histopathology. 2020;76:1032–41. PubMed DOI

Antonescu CR, Dickson BC, Swanson D, Zhang L, Sung YS, Kao YC, et al. Spindle cell tumors with RET gene fusions exhibit a morphologic spectrum akin to tumors with NTRK gene fusions. Am J Surg Pathol. 2019;43:1384–91. PubMed DOI PMC

Wegert J, Vokuhl C, Collord G, Velasco-Herrera MDC, Farndon SJ, Guzzo C, et al. Recurrent intragenic rearrangement of EGFR and BRAF in soft tissue tumors of infants. Nat Commun. 2018;9:2378. PubMed DOI PMC

Kao YC, Fletcher CDM, Alaggio R, Wexler R, Zhang L, Sung YS, et al. Recurrent BRAF gene fusions in a subset of pediatric spindle cell sarcomas—expanding the genetic spectrum of tumors with overlapping features with infantile fibrosarcoma. Am J Surg Pathol. 2018;42:28–38. PubMed DOI PMC

Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, et al. Larotrectnib for paediatric solid tumours harbouring NTRK gene fusions: a multicentre, open-label, phase 1 study. Lancet Oncol. 2018;19:705–14. PubMed DOI PMC

Gupta A, Belsky JA, Schieffer KM, Leraas K, Varga E, McGrath SD, et al. Infantile fibrosarcoma-like tumor driven by novel RBPMS-MET fusion consolidated with cabozantinib. Cold Spring Harb Mol Case Stud. 2020;6:a005645. PubMed DOI PMC

Doebele RC, Davis LE, Aishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. An oncogenic NTRK fusion in a soft tissue sarcoma patient with response to the tropomyosin-related kinase (TRK) inhibitor LOXO-101. Cancer Disco. 2015;5:1049–57. DOI

Subbiah V, Westin SN, Wang K, Araujo D, Wang WL, Miller VA, et al. Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. J Hematol Oncol. 2014;7:8. PubMed DOI PMC

Schreck KC, Grossman SA, Pratilas CA. BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors. Cancers (Basel). 2019;28:126.

Crotty EE, Leary SES, Geyer JR, Olson JM, Millard NE, Sato AA, et al. Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: the Seattle Children’s Hospital experience. J Neurooncol. 2020;148:607–17. PubMed DOI

Kuo JA, Paulson VA, Hempelmann JA, Beightol M, Todhunter S, Colbert BG, et al. Validation and implementation of a modular targeted capture assay for the detection of clinically significant molecular oncology alterations. Practical Lab Med. 2020;19:e00153. DOI

Kline CN, Joseph NM, Grenert JP, van Ziffle J, Talevich E, Onodera C, et al. Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro Oncol. 2017;19:699–709. PubMed

Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D, Lynch KD, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med. 2014;20:1479–84. PubMed DOI

Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M, Leamon J, et al. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J Mol Diagn. 2013;15:171–6. PubMed DOI

Beadling C, Wald AI, Warrick A, Neff TL, Zhong S, Nikiforov YE, et al. A multiplexed amplicon approach for detecting gene fusions by next-generation sequencing. J Mol Diagn. 2016;18:165–75. PubMed DOI

Yaeger R, Kotani D, Mondaca S, Parikh A, Bando H, Van Seventer E, et al. Response to anti-EGFR therapy in patients with BRAF non-V600 mutant metastatic colorectal cancer. Clin Cancer Res. 2019;25:7089–97. PubMed DOI PMC

Yaeger R, Corcoran RB. Targeting alterations in the RAF-MEK pathway. Cancer Disco. 2019;9:329–41. DOI

Antonelli M, Badiali M, Moi L, Buttarelli FR, Baldi C, Massimino M, et al. KIAA1549:BRAF fusion gene in pediatric brain tumors of various histogenesis. Pediatr Blood Cancer. 2015;62:724–7. PubMed DOI

Nozad S, Sheehan CE, Gay LM, Elvin JA, Vergilio JA, Suh J, et al. Comprehensive genomic profiling of malignant phyllodes tumors of the breast. Breast Cancer Res Treat. 2017;162:597–602. PubMed DOI

Phillips JJ, Gong H, Chen K, Joseph NM, van Ziffle J, Jin LW, et al. Activating NRF1-BRAF and ATG7-RAF1 fusions in anaplastic pleomorphic xanthoastrocytoma without BRAF p.V600E mutation. Acta Neuropathol. 2016;132:757–60. PubMed DOI PMC

Isaacson AL, Guseva NV, Bossler AD, Ma D. Urothelial carcinoma with an NRF1-BRAF rearrangement and response to targeted therapy. Cold Spring Harb Mol Case Stud. 2019;5:a003848. PubMed DOI PMC

López G, Oberheim Bush NA, Berger MS, Perry A, Solomon DA. Diffuse non-midline glioma with H3F3A K27M mutation: a prognostic and treatment dilemma. Acta Neuropathol Commun. 2017;5:38. PubMed DOI PMC

Kulkarni A, Al-Hraishawi H, Simhadri S, Hirshfield KM, Chen S, Pine S, et al. BRAF fusion as a novel mechanism of acquired resistance to vemurafenib in BRAFV600E mutant melanoma. Clin Cancer Res. 2017;23:5631–8. PubMed DOI

Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99. PubMed DOI PMC

Hutchinson KE, Lipson D, Stephens PJ, Otto G, Lehmann BD, Lyle PL, et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin Cancer Res. 2013;19:6696–702. PubMed DOI

Kaley T, Touat M, Subbiah V, Hollebecque A, Rodon J, Lockhart AC, et al. BRAF inhibition in BRAFV600-mutant gliomas: results from the VE-BASKET study. J Clin Oncol. 2018;36:3477–84. PubMed DOI PMC

Hostein I, Faur N, Primois C, Boury F, Denard J, Emile JF, et al. BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol. 2010;133:141–8. PubMed DOI

Karamzadeh Dashti N, Bahrami A, Lee SJ, Jenkins SM, Rodriguez FJ, Folpe AL, et al. BRAF V600E mutations occur in a subset of glomus tumors, and are associated with malignant histologic characteristics. Am J Surg Pathol. 2017;41:1532–41. PubMed DOI

Kao YC, Ranucci V, Zhang L, Sung YS, Athanasian EA, Swanson D, et al. Recurrent BRAF gene rearrangements in myxoinflammatory fibroblastic sarcomas, but not hemosiderotic fibrolipomatous tumors. Am J Surg Pathol. 2017;41:1456–65. PubMed DOI PMC

Choueiri TK, Cheville J, Palescandolo E, Fay AP, Kantoff PW, Atkins MB, et al. BRAF mutations in metanephric adenoma of the kidney. Eur Urol. 2012;62:917–22. PubMed DOI PMC

Argani P, Lee J, Netto GJ, Zheng G, Tseh-Lin M, Park BH. Frequent BRAF V600E mutations in metanephric stromal tumor. Am J Surg Pathol. 2016;40:719–22. PubMed DOI

Catic A, Kurtovic-Kozaric A, Sophian A, Mazur L, Skenderi F, Hes O, et al. KANK1-NTRK3 fusions define a subset of BRAF mutation negative renal metanephric adenomas. BMC Med Genet. 2020;21:202. PubMed DOI PMC

Argani P, Beckwith JB. Metanephric stromal tumor. Am J Surg Pathol. 2000;24:917–26. PubMed DOI

Suurmeijer AJH, Dickson BC, Swanson D, Zhang L, Sung YS, Cotzia P, et al. A novel group of spindle cell tumors defined by S100 and CD34 co-expression shows recurrent fusions involving RAF1, BRAF, and NTRK1/2 genes. Genes Chromosomes Cancer. 2018;57:611–21. PubMed DOI PMC

Agaram NP, Zhang L, Sung YS, Chen CL, Chung CT, Antonescu CR, et al. Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol. 2016;40:1407–16. PubMed DOI PMC

Kao YC, Suurmeijer AJH, Argani P, Dickson BC, Zhang L, Sung YS, et al. Soft tissue tumors characterized by a wide spectrum of kinase fusions share a lipofibromatosis-like neural tumor pattern. Genes Chromosomes Cancer. 2020;59:575–83. PubMed DOI

Hicks JK, Henderson-Jackson E, Duggan J, Joyce DM, Brohl AS. Identification of a novel MTAP-RAF1 fusion in a soft tissue sarcoma. Diagn Pathol. 2018;13:77. PubMed DOI PMC

Michal M, Ptáková N, Martínek P, Gatalica Z, Kazakov DV, Michalová K, et al. S100 and CD34 positive spindle cell tumor with prominent perivascular hyalinization and a novel NCOA4-RET fusion. Genes Chromosomes Cancer. 2019;58:680–5. PubMed

Gadd S, Beezhold P, Jennings L, George D, Leuer K, Huang CC, et al. Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children’s Oncology Group study. J Pathol. 2012;228:119–30. PubMed DOI

Davis JL, Antonescu CR, Bahrami A. Infantile fibrosarcoma. In: WHO Classification of Tumours Editorial Board, editor. WHO classification of tumours of soft tissue and bone. 5th ed. Lyon: IARC; 2020. p. 119–21.

Suurmeijer AJH, Antonescu CR. NTRK-rearranged spindle cell tumor (emerging). In: WHO Classification of Tumours Editorial Board, editor. WHO classification of tumours of soft tissue and bone. 5th ed. Lyon: IARC; 2020. p. 287–9.

Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF. Nature. 2010;18:427–430. DOI

Nobre L, Zapotocky M, Ramaswamy V, Ryall S, Bennett J, Alderete D, et al. Outcomes of BRAF V600E pediatric gliomas treated with targeted BRAF inhibition. JCO Precis Oncol. 2020;4:PO.19.00298. PubMed PMC

Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell. 2015;28:370–83. PubMed DOI PMC

Sievert AJ, Lang SS, Boucher KL, Madsen PJ, Slaunwhite E, Choudhari N, et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci USA. 2013;110:5957–62. PubMed DOI PMC

Selt F, Hohloch J, Hielscher T, Sahm F, Capper D, Korshunov A, et al. Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget. 2017;8:11460–79. PubMed DOI

Broman KK, Dossett LA, Sun J, Eroglu Z, Zager JS. Update on BRAF and MEK inhibition for treatment of melanoma in metastatic, unresectable, and adjuvant settings. Expert Opin Drug Saf. 2019;18:381–92. PubMed DOI

Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526:583–6. PubMed DOI

Yao Z, Gao Y, Su W, Yaeger R, Tao J, Na N, et al. RAF inhibitor PLX8394 selectively disrupts BRAF-dimers and RAS-independent BRAF mutant-driven signaling. Nat Med. 2019;25:284–91. PubMed DOI

Jain P, Surrey LF, Straka J, Russo P, Womer R, Li MM, et al. BRAF fusions in pediatric histiocytic neoplasms define distinct therapeutic responsiveness to RAF paradox breakers. Pediatr Blood Cancer. 2021:e28933.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace