Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension

. 2017 Nov 08 ; 7 (1) : 15068. [epub] 20171108

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29118369
Odkazy

PubMed 29118369
PubMed Central PMC5678096
DOI 10.1038/s41598-017-15184-0
PII: 10.1038/s41598-017-15184-0
Knihovny.cz E-zdroje

Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

Zobrazit více v PubMed

Friedman, A. Introduction to Theoretical and Applied Plasma Chemistry in Plasma Chemistry, 1–11 (Cambridge University Press, 2008).

Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta B. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI

Hofft O, Endres F. Plasma electrochemistry in ionic liquids: an alternative route to generate nanoparticles. Phys. Chem. Chem. Phys. 2011;13:13472–13478. doi: 10.1039/c1cp20501c. PubMed DOI

Cermak J, et al. Microscopic Electrical Conductivity of Nanodiamonds after Thermal and Plasma Treatments. MRS Adv. 2016;1:1105–1111. doi: 10.1557/adv.2016.112. DOI

Kong MG, et al. Plasma medicine: an introductory review. New J. Phys. 2009;11:115012. doi: 10.1088/1367-2630/11/11/115012. DOI

Kim SJ, Chung TH. Plasma effects on the generation of reactive oxygen and nitrogen species in cancer cells in-vitro exposed by atmospheric pressure pulsed plasma jets. Appl. Phys. Lett. 2015;107:063702. doi: 10.1063/1.4928545. DOI

De Geyter N, Morent R. Nonthermal Plasma Sterilization of Living and Nonliving Surfaces. Annu. Rev. Chem. Biomol. Eng. 2012;14:255–274. doi: 10.1146/annurev-bioeng-071811-150110. PubMed DOI

Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma — A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI

Choi JW, et al. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation. Sci. Rep. 2016;6:28829. doi: 10.1038/srep28829. PubMed DOI PMC

Zhu W, et al. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Sci. Rep. 2016;6:21974. doi: 10.1038/srep21974. PubMed DOI PMC

Miyamoto K, et al. Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 2016;605:95–101. doi: 10.1016/j.abb.2016.03.023. PubMed DOI

Haertel B, von Woedtke T, Weltmann K-D, Lindequist U. Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomol. Ther. 2014;22:477–490. doi: 10.4062/biomolther.2014.105. PubMed DOI PMC

Bogle MA, Arndt KA, Dover JS. Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Arch. Dermatol. 2007;143:168–174. doi: 10.1001/archderm.143.2.168. PubMed DOI

Morent R, et al. Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 2008;202:3427–3449. doi: 10.1016/j.surfcoat.2007.12.027. DOI

Calchera AR, Curtis AD, Patterson JE. Plasma Treatment of Polystyrene Thin Films Affects More Than the Surface. ACS Appl. Mater. Interfaces. 2012;4:3493–3499. doi: 10.1021/am300585a. PubMed DOI

Mehmood T, et al. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion. Mater. Chem. Phys. 2014;143:668–675. doi: 10.1016/j.matchemphys.2013.09.052. DOI

Dwivedi N, et al. Understanding the Role of Nitrogen in Plasma-Assisted Surface Modification of Magnetic Recording Media with and without Ultrathin Carbon Overcoats. Sci. Rep. 2015;5:7772. doi: 10.1038/srep07772. PubMed DOI PMC

Thimsen E, et al. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas. Nat. Commun. 2014;5:5822. doi: 10.1038/ncomms6822. PubMed DOI

Mariotti D, et al. Low-Temperature Atmospheric Pressure Plasma Processes for “Green” Third Generation Photovoltaics. Plasma Process. Polym. 2016;13:70–90. doi: 10.1002/ppap.201500187. DOI

Stryczewska HD, Ebihara K, Takayama M, Gyoutoku Y, Tachibana M. Non-Thermal Plasma-Based Technology for Soil Treatment. Plasma Process. Polym. 2005;2:238–245. doi: 10.1002/ppap.200400061. DOI

Ling L, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014;4:5859. doi: 10.1038/srep05859. PubMed DOI PMC

Ma R, et al. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015;300:643–651. doi: 10.1016/j.jhazmat.2015.07.061. PubMed DOI

Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003;2:19–24. doi: 10.1038/nmat768. PubMed DOI

Qu G, et al. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode. Adv. Mater. 2016;28:3646–3652. doi: 10.1002/adma.201600689. PubMed DOI

Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–2353. doi: 10.1016/j.actbio.2014.02.015. PubMed DOI

Ghosh S, et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater. 2015;14:505–511. doi: 10.1038/nmat4220. PubMed DOI

Lorenzo M, Zhu B, Srinivasan G. Intrinsically flexible electronic materials for smart device applications. Green Chem. 2016;18:3513–3517. doi: 10.1039/C6GC00826G. DOI

Park C-S, Kim D, Shin B, Tae H-S. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique. Materials. 2016;9:39. doi: 10.3390/ma9010039. PubMed DOI PMC

Dong Y, Yao Y, Lin L, Xinpei L, Yue W. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties. Nanotechnology. 2015;26:495302. doi: 10.1088/0957-4484/26/49/495302. PubMed DOI

Cruz GJ, et al. Nanospherical particles of polypyrrole synthesized and doped by plasma. Polym. 2010;51:4314–4318. doi: 10.1016/j.polymer.2010.07.024. DOI

Montarsolo A, et al. Enhanced adhesion of conductive coating on plasma-treated polyester fabric: A study on the ageing effect. J. Appl. Polym. Sci. 2012;126:1385–1393. doi: 10.1002/app.36762. DOI

Pietrowski P, Lota G, Peziak-Kowalska D, Lota K. Plasma Enrichment of Electrochemical Properties of ConductivePolymers. J. New Mat. Electrochem. Syst. 2015;18:63–38.

Janda M, Machala Z, Niklová A, Martišovitš V. The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sources Sci. Technol. 2012;21:045006. doi: 10.1088/0963-0252/21/4/045006. DOI

Liu DX, et al. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC

Rumbach P, Bartels DM, Sankaran RM, Go DB. The solvation of electrons by an atmospheric-pressure plasma. Nat. Commun. 2015;6:7248. doi: 10.1038/ncomms8248. PubMed DOI PMC

Yang X, Dai T, Zhu Z, Lu Y. Electrochemical synthesis of functional polypyrrole nanotubes via a self-assembly process. Polym. 2007;48:4021–4027. doi: 10.1016/j.polymer.2007.05.023. DOI

Stejskal J, et al. Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI

Ćirić-Marjanović G, et al. Synthesis, Characterization, and Electrochemistry of Nanotubular Polypyrrole and Polypyrrole-Derived Carbon Nanotubes. J. Phys. Chem. C. 2014;118:14770–14784. doi: 10.1021/jp502862d. DOI

Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J. 2007;43:2331–2341. doi: 10.1016/j.eurpolymj.2007.03.045. DOI

Omastová M, Trchová M, Kovářová J, Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003;138:447–455. doi: 10.1016/S0379-6779(02)00498-8. DOI

Crowley K, Cassidy J. In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate. J. Electroanal. Chem. 2003;547:75–82. doi: 10.1016/S0022-0728(03)00191-8. DOI

Gupta S. Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. J. Raman Spectrosc. 2008;39:1343–1355. doi: 10.1002/jrs.2002. DOI

Liu Y-C. Characteristics of vibration modes of polypyrrole on surface-enhanced Raman scattering spectra. J. Electroanal. Chem. 2004;571:255–264. doi: 10.1016/j.jelechem.2004.05.015. DOI

Mitchell GR, Davis FJ, Legge CH. The effect of dopant molecules on the molecular order of electrically-conducting films of polypyrrole. Synth. Met. 1988;26:247–257. doi: 10.1016/0379-6779(88)90241-X. DOI

Julák J, Scholtz V, Kotúčová S, Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys. Med. 2012;28:230–239. doi: 10.1016/j.ejmp.2011.08.001. PubMed DOI

Lu P, Boehm D, Bourke P, Cullen PJ. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process. Polym., e1600207-n/a. 2017

David BG. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D. 2012;45:263001. doi: 10.1088/0022-3727/45/41/415305. DOI

Oehmigen K, et al. The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Process. Polym. 2010;7:250–257. doi: 10.1002/ppap.200900077. DOI

Kopecka J, et al. Polypyrrole nanotubes: mechanism of formation. RSC Adv. 2014;4:1551–1558. doi: 10.1039/C3RA45841E. DOI

Horák P, Khun J. Impedance-stabilized positive corona discharge and its decontamination properties. J. Phys. Conf. Ser. 2010;223:012006. doi: 10.1088/1742-6596/223/1/012006. DOI

Medek J, Weishauptová Z. Determination of resistivity of solids in powdered form. Powder Technol. 1994;80:183–190. doi: 10.1016/0032-5910(94)02856-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...