Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29118369
PubMed Central
PMC5678096
DOI
10.1038/s41598-017-15184-0
PII: 10.1038/s41598-017-15184-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.
Zobrazit více v PubMed
Friedman, A. Introduction to Theoretical and Applied Plasma Chemistry in Plasma Chemistry, 1–11 (Cambridge University Press, 2008).
Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta B. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Hofft O, Endres F. Plasma electrochemistry in ionic liquids: an alternative route to generate nanoparticles. Phys. Chem. Chem. Phys. 2011;13:13472–13478. doi: 10.1039/c1cp20501c. PubMed DOI
Cermak J, et al. Microscopic Electrical Conductivity of Nanodiamonds after Thermal and Plasma Treatments. MRS Adv. 2016;1:1105–1111. doi: 10.1557/adv.2016.112. DOI
Kong MG, et al. Plasma medicine: an introductory review. New J. Phys. 2009;11:115012. doi: 10.1088/1367-2630/11/11/115012. DOI
Kim SJ, Chung TH. Plasma effects on the generation of reactive oxygen and nitrogen species in cancer cells in-vitro exposed by atmospheric pressure pulsed plasma jets. Appl. Phys. Lett. 2015;107:063702. doi: 10.1063/1.4928545. DOI
De Geyter N, Morent R. Nonthermal Plasma Sterilization of Living and Nonliving Surfaces. Annu. Rev. Chem. Biomol. Eng. 2012;14:255–274. doi: 10.1146/annurev-bioeng-071811-150110. PubMed DOI
Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma — A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Choi JW, et al. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation. Sci. Rep. 2016;6:28829. doi: 10.1038/srep28829. PubMed DOI PMC
Zhu W, et al. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Sci. Rep. 2016;6:21974. doi: 10.1038/srep21974. PubMed DOI PMC
Miyamoto K, et al. Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 2016;605:95–101. doi: 10.1016/j.abb.2016.03.023. PubMed DOI
Haertel B, von Woedtke T, Weltmann K-D, Lindequist U. Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomol. Ther. 2014;22:477–490. doi: 10.4062/biomolther.2014.105. PubMed DOI PMC
Bogle MA, Arndt KA, Dover JS. Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Arch. Dermatol. 2007;143:168–174. doi: 10.1001/archderm.143.2.168. PubMed DOI
Morent R, et al. Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 2008;202:3427–3449. doi: 10.1016/j.surfcoat.2007.12.027. DOI
Calchera AR, Curtis AD, Patterson JE. Plasma Treatment of Polystyrene Thin Films Affects More Than the Surface. ACS Appl. Mater. Interfaces. 2012;4:3493–3499. doi: 10.1021/am300585a. PubMed DOI
Mehmood T, et al. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion. Mater. Chem. Phys. 2014;143:668–675. doi: 10.1016/j.matchemphys.2013.09.052. DOI
Dwivedi N, et al. Understanding the Role of Nitrogen in Plasma-Assisted Surface Modification of Magnetic Recording Media with and without Ultrathin Carbon Overcoats. Sci. Rep. 2015;5:7772. doi: 10.1038/srep07772. PubMed DOI PMC
Thimsen E, et al. High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas. Nat. Commun. 2014;5:5822. doi: 10.1038/ncomms6822. PubMed DOI
Mariotti D, et al. Low-Temperature Atmospheric Pressure Plasma Processes for “Green” Third Generation Photovoltaics. Plasma Process. Polym. 2016;13:70–90. doi: 10.1002/ppap.201500187. DOI
Stryczewska HD, Ebihara K, Takayama M, Gyoutoku Y, Tachibana M. Non-Thermal Plasma-Based Technology for Soil Treatment. Plasma Process. Polym. 2005;2:238–245. doi: 10.1002/ppap.200400061. DOI
Ling L, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014;4:5859. doi: 10.1038/srep05859. PubMed DOI PMC
Ma R, et al. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015;300:643–651. doi: 10.1016/j.jhazmat.2015.07.061. PubMed DOI
Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003;2:19–24. doi: 10.1038/nmat768. PubMed DOI
Qu G, et al. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode. Adv. Mater. 2016;28:3646–3652. doi: 10.1002/adma.201600689. PubMed DOI
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–2353. doi: 10.1016/j.actbio.2014.02.015. PubMed DOI
Ghosh S, et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater. 2015;14:505–511. doi: 10.1038/nmat4220. PubMed DOI
Lorenzo M, Zhu B, Srinivasan G. Intrinsically flexible electronic materials for smart device applications. Green Chem. 2016;18:3513–3517. doi: 10.1039/C6GC00826G. DOI
Park C-S, Kim D, Shin B, Tae H-S. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique. Materials. 2016;9:39. doi: 10.3390/ma9010039. PubMed DOI PMC
Dong Y, Yao Y, Lin L, Xinpei L, Yue W. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties. Nanotechnology. 2015;26:495302. doi: 10.1088/0957-4484/26/49/495302. PubMed DOI
Cruz GJ, et al. Nanospherical particles of polypyrrole synthesized and doped by plasma. Polym. 2010;51:4314–4318. doi: 10.1016/j.polymer.2010.07.024. DOI
Montarsolo A, et al. Enhanced adhesion of conductive coating on plasma-treated polyester fabric: A study on the ageing effect. J. Appl. Polym. Sci. 2012;126:1385–1393. doi: 10.1002/app.36762. DOI
Pietrowski P, Lota G, Peziak-Kowalska D, Lota K. Plasma Enrichment of Electrochemical Properties of ConductivePolymers. J. New Mat. Electrochem. Syst. 2015;18:63–38.
Janda M, Machala Z, Niklová A, Martišovitš V. The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sources Sci. Technol. 2012;21:045006. doi: 10.1088/0963-0252/21/4/045006. DOI
Liu DX, et al. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC
Rumbach P, Bartels DM, Sankaran RM, Go DB. The solvation of electrons by an atmospheric-pressure plasma. Nat. Commun. 2015;6:7248. doi: 10.1038/ncomms8248. PubMed DOI PMC
Yang X, Dai T, Zhu Z, Lu Y. Electrochemical synthesis of functional polypyrrole nanotubes via a self-assembly process. Polym. 2007;48:4021–4027. doi: 10.1016/j.polymer.2007.05.023. DOI
Stejskal J, et al. Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI
Ćirić-Marjanović G, et al. Synthesis, Characterization, and Electrochemistry of Nanotubular Polypyrrole and Polypyrrole-Derived Carbon Nanotubes. J. Phys. Chem. C. 2014;118:14770–14784. doi: 10.1021/jp502862d. DOI
Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J. 2007;43:2331–2341. doi: 10.1016/j.eurpolymj.2007.03.045. DOI
Omastová M, Trchová M, Kovářová J, Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003;138:447–455. doi: 10.1016/S0379-6779(02)00498-8. DOI
Crowley K, Cassidy J. In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate. J. Electroanal. Chem. 2003;547:75–82. doi: 10.1016/S0022-0728(03)00191-8. DOI
Gupta S. Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. J. Raman Spectrosc. 2008;39:1343–1355. doi: 10.1002/jrs.2002. DOI
Liu Y-C. Characteristics of vibration modes of polypyrrole on surface-enhanced Raman scattering spectra. J. Electroanal. Chem. 2004;571:255–264. doi: 10.1016/j.jelechem.2004.05.015. DOI
Mitchell GR, Davis FJ, Legge CH. The effect of dopant molecules on the molecular order of electrically-conducting films of polypyrrole. Synth. Met. 1988;26:247–257. doi: 10.1016/0379-6779(88)90241-X. DOI
Julák J, Scholtz V, Kotúčová S, Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys. Med. 2012;28:230–239. doi: 10.1016/j.ejmp.2011.08.001. PubMed DOI
Lu P, Boehm D, Bourke P, Cullen PJ. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process. Polym., e1600207-n/a. 2017
David BG. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D. 2012;45:263001. doi: 10.1088/0022-3727/45/41/415305. DOI
Oehmigen K, et al. The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Process. Polym. 2010;7:250–257. doi: 10.1002/ppap.200900077. DOI
Kopecka J, et al. Polypyrrole nanotubes: mechanism of formation. RSC Adv. 2014;4:1551–1558. doi: 10.1039/C3RA45841E. DOI
Horák P, Khun J. Impedance-stabilized positive corona discharge and its decontamination properties. J. Phys. Conf. Ser. 2010;223:012006. doi: 10.1088/1742-6596/223/1/012006. DOI
Medek J, Weishauptová Z. Determination of resistivity of solids in powdered form. Powder Technol. 1994;80:183–190. doi: 10.1016/0032-5910(94)02856-7. DOI