Mutational analysis of TSC1 and TSC2 genes in Tuberous Sclerosis Complex patients from Greece
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29196670
PubMed Central
PMC5711901
DOI
10.1038/s41598-017-16988-w
PII: 10.1038/s41598-017-16988-w
Knihovny.cz E-zdroje
- MeSH
- delece genu MeSH
- dítě MeSH
- dospělí MeSH
- exony MeSH
- genetické asociační studie MeSH
- hamartin genetika MeSH
- lidé MeSH
- missense mutace MeSH
- mutační analýza DNA MeSH
- rodokmen MeSH
- terciární struktura proteinů MeSH
- tuberin genetika MeSH
- tuberózní skleróza genetika patologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Řecko MeSH
- Názvy látek
- hamartin MeSH
- tuberin MeSH
Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder causing benign tumors in the brain and other vital organs. The genes implicated in disease development are TSC1 and TSC2. Here, we have performed mutational analysis followed by a genotype-phenotype correlation study based on the clinical characteristics of the affected individuals. Twenty unrelated probands or families from Greece have been analyzed, of whom 13 had definite TSC, whereas another 7 had a possible TSC diagnosis. Using direct sequencing, we have identified pathogenic mutations in 13 patients/families (6 in TSC1 and 7 in TSC2), 5 of which were novel. The mutation identification rate for patients with definite TSC was 85%, but only 29% for the ones with a possible TSC diagnosis. Multiplex ligation-dependent probe amplification (MLPA) did not reveal any genomic rearrangements in TSC1 and TSC2 in the samples with no mutations identified. In general, TSC2 disease was more severe than TSC1, with more subependymal giant cell astrocytomas and angiomyolipomas, higher incidence of pharmacoresistant epileptic seizures, and more severe neuropsychiatric disorders. To our knowledge, this is the first comprehensive TSC1 and TSC2 mutational analysis carried out in TSC patients in Greece.
1st Department of Pediatrics Aghia Sophia Children's Hospital University of Athens Athens Greece
University Hospital and Palacky University Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Northrup, H., K, M. K., Pearson, D. A. & Au, K. S. In GeneReviews(R) (eds R. A. Pagon et al.) (2015).
Leung AK, Robson WL. Tuberous sclerosis complex: a review. J Pediatr Health Care. 2007;21:108–114. doi: 10.1016/j.pedhc.2006.05.004. PubMed DOI
Roach ES. Applying the Lessons of Tuberous Sclerosis: The 2015 Hower Award Lecture. Pediatr Neurol. 2016;63:6–22. doi: 10.1016/j.pediatrneurol.2016.07.003. PubMed DOI
Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol. 1998;13:624–628. doi: 10.1177/088307389801301206. PubMed DOI
Northrup H, Krueger D. A. & International Tuberous Sclerosis Complex Consensus, G. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:243–254. doi: 10.1016/j.pediatrneurol.2013.08.001. PubMed DOI PMC
European Chromosome 16 Tuberous Sclerosis, C. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell75, 1305–1315 (1993). PubMed
van Slegtenhorst M, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277:805–808. doi: 10.1126/science.277.5327.805. PubMed DOI
Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13:1259–1268. doi: 10.1016/S0960-9822(03)00506-2. PubMed DOI
Dibble CC, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell. 2012;47:535–546. doi: 10.1016/j.molcel.2012.06.009. PubMed DOI PMC
Tee AR, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA. 2002;99:13571–13576. doi: 10.1073/pnas.202476899. PubMed DOI PMC
Tyburczy ME, et al. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. PLoS Genet. 2015;11:e1005637. doi: 10.1371/journal.pgen.1005637. PubMed DOI PMC
Nellist M, et al. Missense mutations to the TSC1 gene cause tuberous sclerosis complex. Eur J Hum Genet. 2009;17:319–328. doi: 10.1038/ejhg.2008.170. PubMed DOI PMC
Sancak, O. et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet13, 731–741, doi:5201402 [pii] 10.1038/sj.ejhg.5201402 (2005). PubMed
Au, K. S. et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med9, 88–100, doi:10.1097GIM.0b013e31803068c7 00125817-200702000-00006 [pii] (2007). PubMed
Niida Y, et al. Mutational analysis of TSC1 and TSC2 in Japanese patients with tuberous sclerosis complex revealed higher incidence of TSC1 patients than previously reported. J Hum Genet. 2013;58:216–225. doi: 10.1038/jhg.2013.3. PubMed DOI
Yu, T. et al. Novel TSC1 and TSC2 gene mutations in Chinese patients with tuberous sclerosis complex. Clin Neurol Neurosurg154, 104–108, 10.1016/j.clineuro.2017.01.015 (2017). PubMed
Nellist M, et al. Targeted Next Generation Sequencing reveals previously unidentified TSC1 and TSC2 mutations. BMC Med Genet. 2015;16:10. doi: 10.1186/s12881-015-0155-4. PubMed DOI PMC
Ali M, et al. Mutation and polymorphism analysis of TSC1 and TSC2 genes in Indian patients with tuberous sclerosis complex. Acta Neurol Scand. 2005;111:54–63. doi: 10.1111/j.1600-0404.2004.00366.x. PubMed DOI
Jones, A. C. et al. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet64, 1305–1315, doi:S0002-9297(07)62275-7 [pii]10.1086/302381 (1999). PubMed PMC
Dabora, S. L. et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet68, 64–80, doi:S0002-9297(07)62472-0 [pii]10.1086/316951 (2001). PubMed PMC
Martin KR, et al. The genomic landscape of tuberous sclerosis complex. Nat Commun. 2017;8:15816. doi: 10.1038/ncomms15816. PubMed DOI PMC
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. doi: 10.1093/bioinformatics/bti770. PubMed DOI
Sun W, et al. Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations. Nat Commun. 2013;4:2135. PubMed
Voukkalis N, et al. SRPK1 and Akt Protein Kinases Phosphorylate the RS Domain of Lamin B Receptor with Distinct Specificity: A Combined Biochemical and In Silico Approach. PLoS One. 2016;11:e0154198. doi: 10.1371/journal.pone.0154198. PubMed DOI PMC
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI
Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4:363–371. doi: 10.1038/nprot.2009.2. PubMed DOI
Daumke O, Weyand M, Chakrabarti PP, Vetter IR, Wittinghofer A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature. 2004;429:197–201. doi: 10.1038/nature02505. PubMed DOI