Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host-parasitoid interactions

. 2017 ; 12 (12) : e0187803. [epub] 20171213

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29236697

Understanding interactions between herbivores and parasitoids is essential for successful biodiversity protection and monitoring and for biological pest control. Morphological identifications employ insect rearing and are complicated by insects' high diversity and crypsis. DNA barcoding has been successfully used in studies of host-parasitoid interactions as it can substantially increase the recovered real host-parasitoid diversity distorted by overlooked species complexes, or by species with slight morphological differences. However, this approach does not allow the simultaneous detection and identification of host(s) and parasitoid(s). Recently, high-throughput sequencing has shown high potential for surveying ecological communities and trophic interactions. Using mock samples comprising insect larvae and their parasitoids, we tested the potential of DNA metabarcoding for identifying individuals involved in host-parasitoid interactions to different taxonomic levels, and compared it to standard DNA barcoding and morphological approaches. For DNA metabarcoding, we targeted the standard barcoding marker cytochrome oxidase subunit I using highly degenerate primers, 2*300 bp sequencing on a MiSeq platform, and RTAX classification using paired-end reads. Additionally, using a large host-parasitoid dataset from a Central European floodplain forest, we assess the completeness and usability of a local reference library by confronting the number of Barcoding Index Numbers obtained by standard barcoding with the number of morphotypes. Overall, metabarcoding recovery was high, identifying 92.8% of the taxa present in mock samples, and identification success within individual taxonomic levels did not significantly differ among metabarcoding, standard barcoding, and morphology. Based on the current local reference library, 39.4% parasitoid and 90.7% host taxa were identified to the species level. DNA barcoding estimated higher parasitoid diversity than morphotyping, especially in groups with high level of crypsis. This study suggests the potential of metabarcoding for effectively recovering host-parasitoid diversity, together with more accurate identifications obtained from building reliable and comprehensive reference libraries, especially for parasitoids.

Zobrazit více v PubMed

Hawkins BA. Pattern and process in host-parasitoid interactions. 1st ed New York: Cambridge University Press; 1994.

LaSalle J. Parasitic Hymenoptera, biological control and the biodiversity crisis In: LaSalle J, Gauld ID, editors. Hymenoptera and biodiversity. Wallingford: CAB International; 1993. pp. 197–216.

Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst. 1980; 11: 41–65.

Tscharntke T, Hawkins BA. Multitrophic level interactions: an introduction In: Tscharntke T, Hawkins BA, editors. Multitrophic level interactions. New York: Cambridge University Press; 2002. pp. 1–7.

Evans DM, Kitson JJN, Lunt DH, Straw NA, Pocock MJO. Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct Ecol. 2016; 30: 1904–1916. doi: 10.1111/1365-2435.12659 DOI

Kitson JJN, Hahn C, Sands RJ, Straw NA, Evans DM, Lunt DH. Nested metabarcode tagging: a robust tool for studying species interactions in ecology and evolution; 2016. Preprint. bioRxiv 10.1101/035071. Cited 8 June 2016.

Littlefair JE, Clare EL. Barcoding the food chain: from Sanger to high-throughput sequencing. Genome. 2016; 59: 946–958. doi: 10.1139/gen-2016-0028 PubMed DOI

Roslin T, Majaneva S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite! Genome. 2016; 59: 603–628. doi: 10.1139/gen-2015-0229 PubMed DOI

Buckling A, Rainey PB. The role of parasites in sympatric and allopatric host diversification. Nature. 2002; 420: 496–499. doi: 10.1038/nature01164 PubMed DOI

Huber JT. Biodiversity of Hymenoptera In: Foottit RG, Adler PH, editors. Insect biodiversity: science and society. London: Blackwell Publishing; 2009. pp. 303–323.

Santos AMC, Besnard G, Quicke DL. Applying DNA barcoding for the study of geographical variation in host-parasitoid interactions. Mol Ecol Resour. 2011; 11: 46–59. doi: 10.1111/j.1755-0998.2010.02889.x PubMed DOI

Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Nat Acad Sci USA. 2008; 105: 12359–12364. doi: 10.1073/pnas.0805319105 PubMed DOI PMC

Hrcek J, Miller SE, Quicke DL, Smith MA. Molecular detection of trophic links in a complex insect host–parasitoid food web. Mol Ecol Resour. 2011; 11: 786–794. doi: 10.1111/j.1755-0998.2011.03016.x PubMed DOI

Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Nat Acad Sci USA. 2006; 103: 3657–3662. doi: 10.1073/pnas.0511318103 PubMed DOI PMC

González-Chang M, Wratten SD, Lefort M-C, Boyer S. Food webs and biological control: A review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs. 2016; 9: 4–11.

Creer S, Fonseca VG, Porazinska DL, Giblin-Davis RM, Sung W, Power DM, et al. Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol. 2010; 19 Suppl 1: S4–S20. doi: 10.1111/j.1365-294X.2009.04473.x PubMed DOI

Hajibabaei M. The golden age of DNA metasystematics. Trends Genet. 2012; 28: 535–537. doi: 10.1016/j.tig.2012.08.001 PubMed DOI

Chakraborty C, Doss CGP, Patra BC, Bandyopadhyay S. DNA barcoding to map the microbial communities: current advances and future directions. Appl Microbiol Biotechnol. 2014; 98: 3425–3436. doi: 10.1007/s00253-014-5550-9 PubMed DOI

Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012; 21: 2045–2050. doi: 10.1111/j.1365-294X.2012.05470.x PubMed DOI

Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004; 13: 729–744. doi: 10.1046/j.1365-294X.2003.02063.x PubMed DOI

Moritz C, Cicero C. DNA barcoding: promise and pitfalls. PLoS Biol. 2004; 2: e354 doi: 10.1371/journal.pbio.0020354 PubMed DOI PMC

Yu DW, Ji Y, Emerson BC, Wang XY, Ye CX, Yang CY, et al. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol. 2012; 3: 613–623. doi: 10.1111/j.2041-210X.2012.00198.x DOI

Basset Y, Novotny V, Miller SE, Pyle R. Quantifying biodiversity: experience with parataxonomists and digital photography in Papua New Guinea and Guyana. Bioscience. 2000; 50: 899–908. doi: 10.1641/0006-3568(2000)050[0899:qbewpa]2.0.co;2 DOI

Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Nat Acad Sci USA. 2004; 101: 14812–14817. doi: 10.1073/pnas.0406166101 PubMed DOI PMC

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999; 41: 95–98.

Ratnasingham S, Hebert PDN. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes. 2007; 7: 355–364. doi: 10.1111/j.1471-8286.2007.01678.x PubMed DOI PMC

Berry D, Mahfoudh KB, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2011; 77: 7846–7849. doi: 10.1128/AEM.05220-11 PubMed DOI PMC

Schmidt P-A, Bálint M, Greshake B, Bandow C, Rombke J, Schmitt I. Illumina metabarcoding of a soil fungal community. Soil Biol Biochem. 2013; 65: 128–132. doi: 10.1016/j.soilbio.2013.05.014 DOI

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7: 335–336. doi: 10.1038/nmeth.f.303 PubMed DOI PMC

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011; 27: 2194–2200. doi: 10.1093/bioinformatics/btr381 PubMed DOI PMC

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26: 2460–2461. doi: 10.1093/bioinformatics/btq461 PubMed DOI

Soergel DAW, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 2012; 6: 1440–1444. doi: 10.1038/ismej.2011.208 PubMed DOI PMC

Huson DH, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, et al. MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comp Biol. 2016; 12: e1004957 doi: 10.1371/journal.pcbi.1004957 PubMed DOI PMC

Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011; 12: 385 doi: 10.1186/1471-2105-12-385 PubMed DOI PMC

Newcombe RG. Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med. 1998; 17: 873–890. doi: 10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I PubMed DOI

R Development Core Team. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing; 2015. http://R-project.org.

deWaard JR, Ivanova NV, Hajibabaei M, Hebert PDN. Assembling DNA barcodes: Analytical protocols In: Martin C, editor. Methods in molecular biology: environmental genetics. Totowa, USA: Humana Press Inc; 2008. pp. 275–293. PubMed

Ivanova NV, deWaard JR, Hebert PDN. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes. 2006; 6: 998–1002.

Fahner NA, Shokralla S, Baird DJ, Hajibabaei M. Large-scale monitoring of plants through environmental DNA metabarcoding of soil: recovery, resolution, and annotation of four DNA markers. PLoS ONE. 2016; 11: e0157505 doi: 10.1371/journal.pone.0157505 PubMed DOI PMC

Richardson RT, Bengtsson-Palme J, Johnson RM. Evaluating and optimizing the performance of software commonly used for the taxonomic classification of DNA metabarcoding sequence data. Mol Ecol Resour. 2016. Forthcoming. doi: 10.1111/1755-0998.12628 PubMed DOI

Deagle BE, Eveson JP, Jarman SN. Quantification of damage in DNA recovered from highly degraded samples—a case study on DNA in faeces. Front Zool. 2006; 3: 11 doi: 10.1186/1742-9994-3-11 PubMed DOI PMC

Takada H, Nakamura T. Native primary parasitoids and hyperparasitoids attacking an invasive aphid Uroleucon nigrotuberculatum in Japan. Entomol Sci. 2010; 13: 269–272. doi: 10.1111/j.1479-8298.2010.00373.x DOI

Condon MA, Scheffer SJ, Lewis ML, Wharton R, Adams DC, Forbes AA. Lethal interactions between parasites and prey increase niche diversity in a tropical community. Science. 2014; 343: 1240–1244. doi: 10.1126/science.1245007 PubMed DOI

Virgilio M, Jordaens K, Breman FC, Backeljau T, De Meyer M. Identifying insects with incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test case. PLoS ONE. 2012; 7: e31581 doi: 10.1371/journal.pone.0031581 PubMed DOI PMC

Veijalainen A, Wahlberg N, Broad GR, Erwin TL, Longino JT, Saaksjarvi IE. Unprecedented ichneumonid parasitoid wasp diversity in tropical forests. Proc R Soc Lond B Biol Sci. 2012; 279: 4694–4698. doi: 10.1098/rspb.2012.1664 PubMed DOI PMC

Hrček J, Godfray HCJ. What do molecular methods bring to host–parasitoid food webs? Trends Parasitol. 2015; 31: 30–35. doi: 10.1016/j.pt.2014.10.008 PubMed DOI

Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol. 2012; 21: 1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x PubMed DOI

Yeates DK, Seago A, Nelson L, Cameron SL, Joseph L, Trueman JWH. Integrative taxonomy, or iterative taxonomy? Syst Entomol. 2011; 36: 209–217. doi: 10.1111/j.1365-3113.2010.00558.x DOI

Zhang AB, Muster C, Liang HB, Zhu CD, Crozier R, Wan P, et al. A fuzzy-set-theory-based approach to analyse species membership in DNA barcoding. Mol Ecol. 2012; 21: 1848–1863. doi: 10.1111/j.1365-294X.2011.05235.x PubMed DOI

Duron O, Hurst GD. Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biol. 2013; 11: 45 doi: 10.1186/1741-7007-11-45 PubMed DOI PMC

McLean AHC, Parker BJ, Hrček J, Henry LM, Godfray HCJ. Insect symbionts in food webs. Philos Trans R Soc Lond B Biol Sci. 2016; 371: 20150325 doi: 10.1098/rstb.2015.0325 PubMed DOI PMC

Gnanamanickam SS, Immanuel JE. Epiphytic bacteria, their ecology and functions In: Gnanamanickam SS, editor. Plant-associated bacteria. Netherlands: Springer; 2007. pp. 131–153.

Hu X, Yu J, Wang C, Chen H. Cellulolytic bacteria associated with the gut of Dendroctonus armandi Larvae (Coleoptera: Curculionidae: Scolytinae). Forests. 2014; 5: 455–465.

Giorgini M, Bernardo U, Monti MM, Nappo AG, Gebiola M. Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microbiol. 2010; 76: 2589–2599. doi: 10.1128/AEM.03154-09 PubMed DOI PMC

Montagna M, Gómez-Zurita J, Giorgi A, Epis S, Lozzia G, Bandi C. Metamicrobiomics in herbivore beetles of the genus Cryptocephalus (Chrysomelidae): toward the understanding of ecological determinants in insect symbiosis. Insect Sci. 2015; 22: 340–352. doi: 10.1111/1744-7917.12143 PubMed DOI

Hansson C, Smith MA, Janzen DH, Hallwachs W. Integrative taxonomy of New World Euplectrus Westwood (Hymenoptera, Eulophidae), with focus on 55 new species from Area de Conservación Guanacaste, northwestern Costa Rica. Zookeys. 2015; 485: 1–236. doi: 10.3897/zookeys.485.9124 PubMed DOI PMC

Hausmann A, Hebert PDN, Mitchell A, Rougerie R, Sommerer M, Edwards T, et al. Revision of the Australian Oenochroma vinaria Guenée, 1858 species-complex (Lepidoptera: Geometridae, Oenochrominae): DNA barcoding reveals cryptic diversity and assesses status of type specimen without dissection. Zootaxa. 2009; 2239: 1–21. doi: 10.5281/zenodo.190505 DOI

Razowski J, Tarcz S, Greczek-Stachura M. Molecular approach to the systematics of European Tortricini (Lepidoptera: Tortricidae). Folia Biol (Krakow). 2010; 58: 189–194. PubMed

Laštůvka Z, Liška J. Checklist of Lepidoptera of the Czech Republic (Insecta: Lepidoptera). 2010. http://lepidoptera.wz.cz.

Šedivý J. Checklist of Czechoslovak insects III (Hymenoptera). Acta Entomol Mus Natl Pragae. 1989; 19: 1–194.

Vaňhara J, Tschorsnig P, Barták M. New records of Tachinidae (Diptera) from the Czech Republic and Slovakia, with revised check-list. Stud Dipterol. 2004; 10: 679–701.

Hausmann A, Hendrich L, Balke M, Morinière J, Schmidt S, Segerer AH, et al. A major contribution of the ZSM to the genetic library of life: 35,000 insect species barcoded in 7 years In: Kroh A, Berning B, Haring E, Harzhauser M, Sattmann H, Walochnik J, Zimmermann D, Zuschin D, editors. BioSyst.EU 2013 Global systematics! Vienna: Abstract Volume NOBIS; Austria; 2013. 279 pp.

Coissac E, Riaz T, Puillandre N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol. 2012; 21: 1834–1847. doi: 10.1111/j.1365-294X.2012.05550.x PubMed DOI

Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol. 2012; 21: 1821–1833. doi: 10.1111/j.1365-294X.2012.05537.x PubMed DOI

Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol. 2016; 25: 929–942. doi: 10.1111/mec.13428 PubMed DOI

Cruaud P, Rasplus J-Y, Rodriguez LJ, Cruaud A. High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Sci Rep. 2017; 7: 41948 doi: 10.1038/srep41948 PubMed DOI PMC

Somervuo P, Koskela S, Pennanen J, Henrik Nilsson R, Ovaskainen O. Unbiased probabilistic taxonomic classification for DNA barcoding. Bioinformatics. 2016; 32: 2920–2927. doi: 10.1093/bioinformatics/btw346 PubMed DOI

Sint D, Sporleder M, Wallinger C, Zegarra O, Oehm J, Dangi N, et al. A two-dimensional pooling approach towards efficient detection of parasitoid and pathogen DNA at low infestation rates. Methods Ecol Evol. 2016; 7: 1548–1557.

Harvey JA, Poelman EH, Tanaka T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu Rev Entomol. 2013; 58: 333–351. doi: 10.1146/annurev-ento-120811-153622 PubMed DOI

Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE. 2014; 9: e90234 doi: 10.1371/journal.pone.0090234 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...