Behavior of BsoBI endonuclease in the presence and absence of DNA
Language English Country Germany Media electronic
Document type Journal Article
Grant support
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015042
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015085
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015070
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29264670
DOI
10.1007/s00894-017-3557-8
PII: 10.1007/s00894-017-3557-8
Knihovny.cz E-resources
- Keywords
- Conformational change, Enzyme opening, Metadynamics, Molecular dynamics,
- MeSH
- DNA metabolism MeSH
- Catalytic Domain MeSH
- Protein Conformation MeSH
- Deoxyribonucleases, Type II Site-Specific metabolism MeSH
- Molecular Dynamics Simulation * MeSH
- Computational Biology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- CYCGRG-specific type II deoxyribonucleases MeSH Browser
- DNA MeSH
- Deoxyribonucleases, Type II Site-Specific MeSH
BsoBI is a type II restriction endonuclease belonging to the EcoRI family. There is only one previously published X-ray structure for this endonuclease: it shows a homodimer of BsoBI completely encircling DNA in a tunnel. In this work, molecular dynamics simulations were employed to elucidate possible ways in which DNA is loaded into this complex prior to its cleavage. We found that the dimer does not open spontaneously when DNA is removed from the complex on the timescale of our simulations (~ 0.5 μs). A biased simulation had to be used to facilitate the opening, which revealed a possible way for the two catalytic domains to separate. The α-helices connecting the catalytic and helical domains were found to act as a hinge during the separation. In addition, we found that the opening of the BsoBI dimer was influenced by the type of counterions present in the environment. A reference simulation of the BsoBI/DNA complex further showed spontaneous reorganization of the active sites due to the binding of solvent ions, which led to an active-site structure consistent with other experimental structures of type II restriction endonucleases determined in the presence of metal ions.
See more in PubMed
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6 PubMed
Nucleic Acids Res. 2009 Oct;37(19):6613-24 PubMed
J Mol Biol. 2004 Jan 2;335(1):307-19 PubMed
Nucleic Acids Res. 2000 Jan 1;28(1):235-42 PubMed
J Biol Chem. 1989 Jan 15;264(2):675-8 PubMed
Cell Mol Life Sci. 2005 Mar;62(6):685-707 PubMed
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41 PubMed
Proteins. 2006 Nov 15;65(3):712-25 PubMed
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88 PubMed
Nucleic Acids Res. 2008 Nov;36(19):6109-17 PubMed
J Chem Theory Comput. 2011 Feb 8;7(2):525-37 PubMed
Nat Struct Biol. 1998 Oct;5(10):910-6 PubMed
Proteins. 1993 Dec;17(4):412-25 PubMed
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W665-7 PubMed
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5 PubMed
J Biol Chem. 2005 Feb 18;280(7):5605-10 PubMed
Structure. 2001 Feb 7;9(2):133-44 PubMed
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95 PubMed
Gene. 1997 Mar 25;188(1):35-9 PubMed
Annu Rev Biophys Biomol Struct. 2000;29:291-325 PubMed
Phys Biol. 2011 Oct;8(5):056001 PubMed
Biomed Res Int. 2014;2014:304563 PubMed
EMBO J. 2006 May 17;25(10):2219-29 PubMed
J Mol Graph. 1996 Feb;14(1):33-8, 27-8 PubMed
Biophys J. 2009 Apr 8;96(7):2808-22 PubMed
Sci Rep. 2015 Feb 12;5:8425 PubMed
J Phys Chem A. 2006 Jan 19;110(2):548-63 PubMed
Biopolymers. 1996 Mar;38(3):305-20 PubMed
Biophys J. 2007 Jun 1;92(11):3817-29 PubMed
Mol Cell. 2005 Oct 7;20(1):155-66 PubMed
J Biol Chem. 1985 May 25;260(10):6160-6 PubMed
Nucleic Acids Res. 2003 Sep 1;31(17):5108-21 PubMed
Biophys J. 1998 Jul;75(1):422-7 PubMed
Nucleic Acids Res. 1998 Jan 1;26(1):338-50 PubMed
Curr Protoc Protein Sci. 2007 Nov;Chapter 2:Unit 2.9 PubMed