A Novel Low-Latency and Energy-Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud System

. 2022 Jul 16 ; 22 (14) : . [epub] 20220716

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35891007

Grantová podpora
SP2022/18 and No. SP2022/34 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/17_049/ 0008425 European Regional Development Fund in Research Platform focused on Industry 4.0 and Robotics in Ostrava project

In healthcare, there are rapid emergency response systems that necessitate real-time actions where speed and efficiency are critical; this may suffer as a result of cloud latency because of the delay caused by the cloud. Therefore, fog computing is utilized in real-time healthcare applications. There are still limitations in response time, latency, and energy consumption. Thus, a proper fog computing architecture and good task scheduling algorithms should be developed to minimize these limitations. In this study, an Energy-Efficient Internet of Medical Things to Fog Interoperability of Task Scheduling (EEIoMT) framework is proposed. This framework schedules tasks in an efficient way by ensuring that critical tasks are executed in the shortest possible time within their deadline while balancing energy consumption when processing other tasks. In our architecture, Electrocardiogram (ECG) sensors are used to monitor heart health at home in a smart city. ECG sensors send the sensed data continuously to the ESP32 microcontroller through Bluetooth (BLE) for analysis. ESP32 is also linked to the fog scheduler via Wi-Fi to send the results data of the analysis (tasks). The appropriate fog node is carefully selected to execute the task by giving each node a special weight, which is formulated on the basis of the expected amount of energy consumed and latency in executing this task and choosing the node with the lowest weight. Simulations were performed in iFogSim2. The simulation outcomes show that the suggested framework has a superior performance in reducing the usage of energy, latency, and network utilization when weighed against CHTM, LBS, and FNPA models.

Zobrazit více v PubMed

Sharma S., Saini H. A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustain. Comput. Inform. Syst. 2019;24:100355. doi: 10.1016/j.suscom.2019.100355. DOI

Dubey H., Monteiro A., Constant N., Abtahi M., Borthakur D., Mahler L., Sun Y., Yang Q., Akbar U., Mankodiya K. Handbook of Large-Scale Distributed Computing in Smart Healthcare. Springer; Berlin/Heidelberg, Germany: 2017. Fog computing in medical internet-of-things: Architecture, implementation, and applications; pp. 281–321.

Kraemer F.A., Braten A.E., Tamkittikhun N., Palma D. Fog computing in healthcare–A review and discussion. IEEE Access. 2017;5:9206–9222. doi: 10.1109/ACCESS.2017.2704100. DOI

Paul A., Pinjari H., Hong W.-H., Seo H.C., Rho S. Fog computing-based IoT for health monitoring system. J. Sens. 2018;2018:1386470. doi: 10.1155/2018/1386470. DOI

Cao Y., Chen S., Hou P., Brown D. FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation; Proceedings of the 2015 IEEE International Conference on Networking, Architecture and Storage (NAS); Boston, MA, USA. 6–7 August 2015; pp. 2–11. DOI

Bitam S., Zeadally S., Mellouk A. Fog computing job scheduling optimization based on bees swarm. Enterp. Inf. Syst. 2018;12:373–397. doi: 10.1080/17517575.2017.1304579. DOI

Bonomi F., Milito R., Zhu J., Addepalli S. Fog computing and its role in the internet of things; Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing; Helsinki, Finland. 17 August 2012; pp. 13–16.

Hao Z., Novak E., Yi S., Li Q. Challenges and software architecture for fog computing. IEEE Internet Comput. 2017;21:44–53. doi: 10.1109/MIC.2017.26. DOI

Tychalas D., Karatza H. A scheduling algorithm for a fog computing system with bag-of-tasks jobs: Simulation and performance evaluation. Simul. Model. Pract. Theory. 2019;98:101982. doi: 10.1016/j.simpat.2019.101982. DOI

Harbi Y., Aliouat Z., Refoufi A., Harous S. Recent security trends in internet of things: A comprehensive survey. IEEE Access. 2021;9:113292–113314. doi: 10.1109/ACCESS.2021.3103725. DOI

Rafique H., Shah M.A., Islam S.U., Maqsood T., Khan S., Maple C. A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource management in fog computing. IEEE Access. 2019;7:115760–115773. doi: 10.1109/ACCESS.2019.2924958. DOI

Ghobaei-Arani M., Souri A., Safara F., Norouzi M. An efficient task scheduling approach using moth-flame optimization algorithm for cyber-physical system applications in fog computing. Trans. Emerg. Telecommun. Technol. 2020;31:e3770. doi: 10.1002/ett.3770. DOI

Pham X.-Q., Man N.D., Tri N.D.T., Thai N.Q., Huh E.-N. A cost- and performance-effective approach for task scheduling based on collaboration between cloud and fog computing. Int. J. Distrib. Sens. Netw. 2017;13:1550147717742073. doi: 10.1177/1550147717742073. DOI

Lakhan A., Mohammed M.A., Elhoseny M., Alshehri M.D., Abdulkareem K.H. Blockchain multi-objective optimization approach-enabled secure and cost-efficient scheduling for the Internet of Medical Things (IoMT) in fog-cloud system. Soft Comput. 2022;26:6429–6442. doi: 10.1007/s00500-022-07167-9. DOI

Lakhan A., Mohammed M.A., Nedoma J., Martinek R., Tiwari P., Vidyarthi A., Alkhayyat A., Wang W. Federated-learning based privacy preservation and fraud-enabled blockchain IoMT system for healthcare. IEEE J. Biomed. Health Inform. 2022:2168–2194. doi: 10.1109/JBHI.2022.3165945. PubMed DOI

Lakhan A., Mohammed M.A., Kozlov S., Rodrigues J.J. Mobile-fog-cloud assisted deep reinforcement learning and blockchain-enable IoMT system for healthcare workflows. Trans. Emerg. Telecommun. Technol. 2021:e4363. doi: 10.1002/ett.4363. DOI

Lakhan A., Mohammed M.A., Rashid A.N., Kadry S., Abdulkareem K.H., Nedoma J., Martinek R., Razzak I. Restricted Boltzmann machine assisted secure serverless edge system for internet of medical things. IEEE J. Biomed. Health Inform. 2022 doi: 10.1109/JBHI.2022.3178660. PubMed DOI

Kumar K., Kumar A., Kumar N., Mohammed M.A., Al-Waisy A.S., Jaber M.M., Shah R., Al-Andoli M.N. Dimensions of internet of things: Technological taxonomy architecture applications and open challenges—A systematic review. Wirel. Commun. Mob. Comput. 2022;2022:9148373. doi: 10.1155/2022/9148373. DOI

Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Qu C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., et al. Clinical characteristics of coronavirus disease in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. PubMed DOI PMC

Terracciano R., Preianò M., Fregola A., Pelaia C., Savino T.M.R. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2021;80:639–645. PubMed PMC

Jain A., Singh M., Kapoor J.S.B. Low power wearable cardiac activity monitoring device: ECG A review. Int. Res. J. Eng. Technol. 2021;8:3413–3428.

Cortés R., Bonnaire X., Marin O., Sens P. Stream processing of healthcare sensor data: Studying user traces to identify challenges from a big data perspective. Procedia Comput. Sci. 2015;52:1004–1009. doi: 10.1016/j.procs.2015.05.093. DOI

Nguyen B.M., Binh H.T.T., Anh T.T., Son D.B. Evolutionary algorithms to optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment. Appl. Sci. 2019;9:1730. doi: 10.3390/app9091730. DOI

Hassan S.R., Ahmad I., Ahmad S., AlFaify A., Shafiq M. Remote pain monitoring using fog computing for e-healthcare: An efficient architecture. Sensors. 2020;20:6574. doi: 10.3390/s20226574. PubMed DOI PMC

Abdelmoneem R.M., Benslimane A., Shaaban E., Abdelhamid S., Ghoneim S. A cloud-fog based architecture for IoT applications dedicated to healthcare; Proceedings of the ICC 2019–2019 IEEE International Conference on Communications (ICC); Shanghai, China. 20–24 May 2019; pp. 1–6. DOI

Mukherjee A., Ghosh S., Behere A., Ghosh S.K., Buyya R. Internet of Health Things (IoHT) for personalized health care using integrated edge-fog-cloud network. J. Ambient Intell. Humaniz. Comput. 2020;12:943–959. doi: 10.1007/s12652-020-02113-9. DOI

Mutlag A.A., Ghani M.K.A., Mohammed M.A., Maashi M.S., Mohd O., Mostafa S.A., Abdulkareem K.H., Marques G., Díez I.D.L.T. MAFC: Multi-agent fog computing model for healthcare critical tasks management. Sensors. 2020;20:1853. doi: 10.3390/s20071853. PubMed DOI PMC

Mastoi Q.-U., Wah T.Y., Raj R.G., Lakhan A. A novel cost-efficient framework for critical heartbeat task scheduling using the internet of medical things in a fog cloud system. Sensors. 2020;20:441. doi: 10.3390/s20020441. PubMed DOI PMC

Asghar A., Abbas A., Khattak H.A., Khan S.U. Fog based architecture and load balancing methodology for health monitoring systems. IEEE Access. 2021;9:96189–96200. doi: 10.1109/ACCESS.2021.3094033. DOI

Tun K.N., Paing A.M.M. Resource aware placement of IoT devices in fog computing; Proceedings of the 2020 International Conference on Advanced Information Technologies (ICAIT); Yangon, Myanmar. 4–5 November 2020; pp. 176–181.

Mutlag A.A., Ghani M.K.A., Mohammed M.A., Lakhan A., Mohd O., Abdulkareem K.H., Garcia-Zapirain B. Multi-agent systems in fog–cloud computing for critical healthcare task management model (CHTM) used for ECG monitoring. Sensors. 2021;21:6923. doi: 10.3390/s21206923. PubMed DOI PMC

Ghanavati S., Abawajy J.H., Izadi D. An energy aware task scheduling model using ant-mating optimization in fog computing environment. IEEE Trans. Serv. Comput. 2020:1–10. doi: 10.1109/TSC.2020.3028575. DOI

Wen Y., Zhang W., Luo H. Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud clones; Proceedings of the 2012 Proceedings IEEE INFOCOM; Orlando, FL, USA. 25–30 March 2012; pp. 2716–2720. DOI

Tripathy S.S., Roy D.S., Barik R.K. M2FBalancer: A mist-assisted fog computing-based load balancing strategy for smart cities. J. Ambient Intell. Smart Environ. 2021;13:219–233. doi: 10.3233/AIS-210598. DOI

Pochet Y., Wolsey L.A. Production Planning by Mixed Integer Programming. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2006.

Zhou S., Zhang Z., Gu J. Time-domain ECG signal analysis based on smart-phone; Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston, MA, USA. 30 August 2011–3 September 2011; pp. 2582–2585. PubMed

[(accessed on 16 January 2022)]. Available online: http://csmbio.csm.jmu.edu/biology/danie2jc/heart.htm.

Umer M., Bhatti B.A., Tariq M.H., Zia-Ul-Hassan M., Khan M.Y., Zaidi T. Electrocardiogram feature extraction and pattern recognition using a novel windowing algorithm. Adv. Biosci. Biotechnol. 2014;5:886. doi: 10.4236/abb.2014.511103. DOI

Sai Y.P. A review on arrhythmia classification using ECG signals; Proceedings of the 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS); Bhopal, India. 22–23 February 2020; pp. 1–6.

Triantaphyllou E. Multi-Criteria Decision-Making Methods: A Comparative Study. Springer; Berlin/Heidelberg, Germany: 2000. Multi-criteria decision-making methods; pp. 5–21.

MacCrimmon K.R. Decisionmaking among Multiple-Attribute Alternatives: A Survey and Consolidated Approach. Rand Corp; Santa Monica, CA, USA: 1968.

[(accessed on 16 January 2022)]. Available online: http://archive.ics.uci.edu/ml/datasets/arrhythmia.

Moghadas E., Rezazadeh J., Farahbakhsh R. An IoT patient monitoring based on fog computing and data mining: Cardiac arrhythmia usecase. Internet Things. 2020;11:100251. doi: 10.1016/j.iot.2020.100251. DOI

Sidikova M., Martinek R., Kawala-Sterniuk A., Ladrova M., Jaros R., Danys L., Simonik P. Vital sign monitoring in car seats based on electrocardiography, ballistocardiography and seismocardiography: A review. Sensors. 2020;20:5699. doi: 10.3390/s20195699. PubMed DOI PMC

Lakhan A., Mohammed M., Rashid A., Kadry S., Panityakul T., Abdulkareem K., Thinnukool O. Smart-contract aware ethereum and client-fog-cloud healthcare system. Sensors. 2021;21:4093. doi: 10.3390/s21124093. PubMed DOI PMC

Lakhan A., Mastoi Q.-U., Elhoseny M., Memon M.S., Mohammed M.A. Deep neural network-based application partitioning and scheduling for hospitals and medical enterprises using IoT assisted mobile fog cloud. Enterp. Inf. Syst. 2022;16:1883122. doi: 10.1080/17517575.2021.1883122. DOI

Zhang T., Wang S., Li G., Liu F., Zhu G., Wang R. Accelerating edge intelligence via integrated sensing and communication. arXiv. 20212107.09574

Gong A., Zhang T., Chen H., Zhang Y. Age-of-information-based scheduling in multiuser uplinks with stochastic arrivals: A POMDP approach; Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference; Taipei, Taiwan. 7–11 December 2020; pp. 1–6. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

DRLBTS: deep reinforcement learning-aware blockchain-based healthcare system

. 2023 Mar 13 ; 13 (1) : 4124. [epub] 20230313

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...