Discontinuous transcription
Language English Country United States Media print
Document type Journal Article, Review
PubMed
29285985
PubMed Central
PMC5973254
DOI
10.1080/19491034.2017.1419112
Knihovny.cz E-resources
- Keywords
- Pulsing transcription, bursting, discontinuous gene expression, kinetics, transcriptional fluctuation,
- MeSH
- Transcription, Genetic genetics MeSH
- Kinetics MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Numerous studies based on new single-cell and single-gene techniques show that individual genes can be transcribed in short bursts or pulses accompanied by changes in pulsing frequencies. Since so many examples of such discontinuous or fluctuating transcription have been found from prokaryotes to mammals, it now seems to be a common mode of gene expression. In this review we discuss the occurrence of the transcriptional fluctuations, the techniques used for their detection, their putative causes, kinetic characteristics, and probable physiological significance.
See more in PubMed
Coulon A, Chow CC, Singer RH, et al.. Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat Rev Genet. 2013;14(8):572–584. https://doi.org/10.1038/nrg3484. PubMed DOI PMC
McKnight SL, Miller OL Jr. Post-replicative nonribosomal transcription units in D. melanogaster embryos. Cell. 1979;17(3):551–563. https://doi.org/10.1016/0092-8674(79)90263-0. PubMed DOI
Chong S, Chen C, Ge H, et al.. Mechanism of transcriptional bursting in bacteria. Cell. 2014;158:314–326. https://doi.org/10.1016/j.cell.2014.05.038. PubMed DOI PMC
Golding I, Paulsson J, Zawilski SM, et al.. Real-time kinetics of gene activity in individual bacteria. Cell. 2005;123:1025–1036. https://doi.org/10.1016/j.cell.2005.09.031. PubMed DOI
Harper CV, Featherstone K, Semprini S, et al.. Spatially coordinated dynamic organisation of prolactin gene expression in living pituitary tissue. J Cell Sci. 2010;123:424–430. https://doi.org/10.1242/jcs.060434. PubMed DOI PMC
Suter DM, Molina N, Gatfield D, et al.. Mammalian genes are transcribed with widely different bursting kinetics. Science. 2011a;332(6028):472–474. https://doi.org/10.1126/science.1198817. PubMed DOI
Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L, Hutzler A, Nizhberg A, Itzkovitz S. Bursty gene expression in the intact mammalian liver. Mol Cell. 2015;58:147–156. https://doi.org/10.1016/j.molcel.2015.01.027. PubMed DOI PMC
Little SC, Tikhonov M, Gregor T. Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell. 2013;154:789–800. https://doi.org/10.1016/j.cell.2013.07.025. PubMed DOI PMC
Bothma JP, Garcia HG, Esposito E, et al.. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. Proc Natl Acad Sci USA. 2014;111:10598–10603. https://doi.org/10.1073/pnas.1410022111. PubMed DOI PMC
Chang HH, Hemberg M, Barahona M, et al.. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008;453:544–547. https://doi.org/10.1038/nature06965. PubMed DOI PMC
Abranches E, Guedes AMV, Moravec M, et al.. Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development. 2014;141:2770–2779. https://doi.org/10.1242/dev.108910. PubMed DOI PMC
Ochiai H, Sugawara T, Sakuma T, et al.. Stochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells. Sci Rep. 2014;4:7125. https://doi.org/10.1038/srep07125. PubMed DOI PMC
Lo MY, Rival-Gervier S, Pasceri P, et al.. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells. PLoS One. 2012;7(5):e37130. https://doi.org/10.1371/journal.pone.0037130. PubMed DOI PMC
Raj A, Peskin CS, Tranchina D, et al.. Stochastic mRNA synthesis in mammalian cells. Stochastic mRNA synthesis in mammalian cells. Plos Biol. 2006;4:1707–1719. https://doi.org/10.1371/journal.pbio.0040309. PubMed DOI PMC
Dar RD, Razooky BS, Singh A, et al.. Transcriptional burst frequency and burst size are equally modulated across the human genome. PNAS. 2012;109(43):17454–17459. https://doi.org/10.1073/pnas.1213530109. PubMed DOI PMC
Golding I, Cox EC. RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci USA. 2004;101:11310–11315. https://doi.org/10.1073/pnas.0404443101. PubMed DOI PMC
Chubb JR, Trcek T, Shenoy SM, et al.. Transcriptional pulsing of a developmental gene. Curr Biol. 2006;16:1018–1025. https://doi.org/10.1016/j.cub.2006.03.092. PubMed DOI PMC
Younger S, Rosenfeld L, Garini Y, et al.. Single-allele analysis of transcription kinetics in living mammalian cells. Nat Methods. 2010;7:631–633. https://doi.org/10.1038/nmeth.1482. PubMed DOI
Lionnet T, Czaplinski K, Darzacq X, et al.. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods. 2011;8:165–170. https://doi.org/10.1038/nmeth.1551. PubMed DOI PMC
Suter DM, Nacho Molina N, Felix Naef F, et al.. Origins and consequences of transcriptional discontinuity. Curr Opin Cell Biol. 2011b;23(6):657–662. https://doi.org/10.1016/j.ceb.2011.09.004. PubMed DOI
Zenklusen D, Larson DR, Singer RH. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol. 2008;15(12):1263–1271. https://doi.org/10.1038/nsmb.1514. PubMed DOI PMC
Muramoto T, Muller I, Thomas G, et al.. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr Biol. 2010;20:397–406. https://doi.org/10.1016/j.cub.2010.01.017. PubMed DOI
Pliss A, Kuzmin AN, Kachynski AV, et al.. Fluctuations and synchrony of RNA synthesis in nucleoli. Integr Biol (Camb). 2015;7(6):681–692. https://doi.org/10.1039/C5IB00008D. PubMed DOI
Turowski TW, Tollervey D. Transcription by RNA polymerase III: insights into mechanism and regulation. Biochem Soc Trans. 2016;44(5):1367–1375. https://doi.org/10.1042/BST20160062. PubMed DOI PMC
Hornacek M, Kovacik L, Mazel T, et al.. Fluctuations of pol I and fibrillarin contents of the nucleoli. Nucleus. 2017;8:1–12. https://doi.org/10.1080/19491034.2017.1306160. PubMed DOI PMC
Haaf T, Hayman DL, Schmid M. Quantitative determination of rDNA transcription units in vertebrate cells. Exp Cell Res. 1991;193(1):78–86. https://doi.org/10.1016/0014-4827(91)90540-B. PubMed DOI
Haaf T, Ward DC. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res. 1996;224(1):163–173. https://doi.org/10.1006/excr.1996.0124. PubMed DOI
Cheutin T, O'Donohue MF, Beorchia A, et al.. Three-dimensional organization of active rRNA genes within nucleolus. J Cell Sci. 2002;115(16):3297–3307. PubMed
Denissov S, Lessard F, Mayer C, et al.. A model for the topology of active ribosomal RNA genes. EMBO Rep. 2011;12(3):231–237. https://doi.org/10.1038/embor.2011.8. PubMed DOI PMC
Reid G, Hübner MR, Métivier R, et al.. Cyclic, proteasome-mediated turnover of unliganded and liganded ER alpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell. 2003;11(3):695–707. https://doi.org/10.1016/S1097-2765(03)00090-X. PubMed DOI
Lahav G, Rosenfeld N, Sigal A, et al.. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet. 2004;36(2):147–150. https://doi.org/10.1038/ng1293. PubMed DOI
Rosbash M, Bradley S, Kadener S, et al.. Transcriptional feedback and definition of the circadian pacemaker in Drosophila and animals. Cold Spring Harb Symp Quant Biol. 2007;72:75–83. https://doi.org/10.1101/sqb.2007.72.062. PubMed DOI
Stratmann M, Suter DM, Molina N, et al.. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol Cell. 2012;48(2):277–287. https://doi.org/10.1016/j.molcel.2012.08.012. PubMed DOI
Fuda NJ, Ardehali MB, Lis JT. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature. 2009;461(7261):186–192. https://doi.org/10.1038/nature08449. PubMed DOI PMC
Femino AM, Fay FS, Fogarty K, et al.. Visualization of single RNA transcripts in situ. Science. 1998;280:585–590. https://doi.org/10.1126/science.280.5363.585. PubMed DOI
Mueller F, Senecal A, Tantale K, et al.. FISH-quant: automatic counting of transcripts in 3D FISH images. Nature Methods. 2013;10:277–278. https://doi.org/10.1038/nmeth.2406. PubMed DOI
Bahar Halpern K, Itzkovitz S. Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues. Methods. 2016;98:134–142. https://doi.org/10.1016/j.ymeth.2015.11.015. PubMed DOI
Femino AM, Fogarty K, Lifshitz LM, Carrington W, Singer RH. Visualization of single molecules of mRNA in situ. Methods Enzymol. 2003;361:245–304. https://doi.org/10.1016/S0076-6879(03)61015-3. PubMed DOI
Raj A, van den Bogaard P, Rifkin SA, et al.. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 2008a;5:877–879. https://doi.org/10.1038/nmeth.1253. PubMed DOI PMC
Chubb JR, Liverpool TB. Bursts and pulses: insights from single cell studies into transcriptional mechanisms. Curr Opin Genet Dev. 2010;20(5):478–484. https://doi.org/10.1016/j.gde.2010.06.009. PubMed DOI
Brown CR, Mao C, Falkovskaia E, Jurica MS, Boeger H. Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol. 2013;11(8):e10001621. https://doi.org/10.1371/journal.pbio.1001621. PubMed DOI PMC
Bertrand E, Chartrand P, Schaefer M, et al.. Localization of ASH1 mRNA particles in living yeast. Molecular Cell. 1998;2:437–445. https://doi.org/10.1016/S1097-2765(00)80143-4. PubMed DOI
Bensidoun P, Raymond P, Oeffinger M, et al.. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae. Methods. 2016;98:104–114. https://doi.org/10.1016/j.ymeth.2016.01.006. PubMed DOI
Singh A, Razooky B, Cox CD, et al.. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys J. 2010;98(8):32–34. https://doi.org/10.1016/j.bpj.2010.03.001. PubMed DOI PMC
Larson DR, Zenklusen D, Wu B, et al.. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science. 2011;332(6028):475–478. https://doi.org/10.1126/science.1202142. PubMed DOI PMC
Grünwald D, Singer RH. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature. 2010;467(7315):604–607. https://doi.org/10.1038/nature09438. PubMed DOI PMC
Schmidt U, Basyuk E, Robert MC, et al.. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J Cell Biol. 2011;193(5):819–829. https://doi.org/10.1083/jcb.201009012. PubMed DOI PMC
Coulon A, Larson DR. Fluctuation analysis: dissecting transcriptional kinetics with signal theory. Methods Enzymol. 2016;572:159–191. https://doi.org/10.1016/bs.mie.2016.03.017. PubMed DOI PMC
Shav-Tal Y, Darzacq X, Shenoy SM, et al.. Dynamics of single mRNPs in nuclei of living cells. Science. 2004;304(5678):1797–1800. https://doi.org/10.1126/science.1099754. PubMed DOI PMC
Corrigan AM, Tunnacliffe E, Cannon D, et al.. A continuum model of transcriptional bursting. eLife. 2016;5:e13051. https://doi.org/10.7554/eLife.13051. PubMed DOI PMC
Dar RD, Sydney M. Shaffer SM, Singh A, Razooky BS, Simpson ML, Raj A, Weinberger LS. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels. PLoS One. 2016;11(7):e0158298. https://doi.org/10.1371/journal.pone.0158298. PubMed DOI PMC
Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA. 2002;99(20):12795–12800. https://doi.org/10.1073/pnas.162041399. PubMed DOI PMC
Elowitz MB, Levine AJ, Siggia ED, et al.. Stochastic gene expression in a single cell. Science. 2002;297:1183–1186. https://doi.org/10.1126/science.1070919. PubMed DOI
Elgart V, Jia T, Fenley AT, et al.. Connecting protein and mRNA burst distributions for stochastic models of gene expression. Phys Biol. 2011;8:046001. https://doi.org/10.1088/1478-3975/8/4/046001. PubMed DOI
Li G, Levitus M, Bustamante C, et al.. Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol. 2005;12:46–53. https://doi.org/10.1038/nsmb869. PubMed DOI
Schoenfelder S, Clay I, Fraser Peter. The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev. 2010;20(2):127–133. https://doi.org/10.1016/j.gde.2010.02.002. PubMed DOI
Stavreva DA, Wiench M, John S, et al.. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat Cell Biol. 2009;11:1093–1102. https://doi.org/10.1038/ncb1922. PubMed DOI PMC
Paulsson J. Models of stochastic gene expression. Phys Life Rev. 2005;2(2):157–175. https://doi.org/10.1016/j.plrev.2005.03.003. DOI
Ozbudak EM, Thattai M, Kurtser I, et al.. Regulation of noise in the expression of a single gene. Nature Genet. 2002;31:69–73. https://doi.org/10.1038/ng869. PubMed DOI
Blake WJ, Kærn M, Cantor CR, et al.. Noise in eukaryotic gene expression. Nature. 2003;422:633–637. https://doi.org/10.1038/nature01546. PubMed DOI
Raser JM, O'Shea EK. Control of stochasticity in eukaryotic gene expression. Science. 2004;304:1811. https://doi.org/10.1126/science.1098641. PubMed DOI PMC
Becskei A, Kaufmann BB, van Oudenaarden A. Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nat Genet. 2005;37(9):937–944. https://doi.org/10.1038/ng1616. PubMed DOI
Fukaya T, Lim B, Levine M. Enhancer control of transcriptional bursting. Cell. 2016;166:358–368. https://doi.org/10.1016/j.cell.2016.05.025. PubMed DOI PMC
Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys. 1976;22:403–434. https://doi.org/10.1016/0021-9991(76)90041-3. DOI
Shahrezaei V, Ollivier JF, Swain PS. Coloured extrinsic fluctuations and stochastic gene expression. Mol Syst Biol. 2008;4:196. https://doi.org/10.1038/msb.2008.31. PubMed DOI PMC
Sherman MS, Cohen BA. A computational Framework for analyzing stochasticity in gene expression. PLoS Comput Biol. 2014;10(5):e1003596. https://doi.org/10.1371/journal.pcbi.1003596. PubMed DOI PMC
Peccoud J, Ycart B. Markovian modeling of gene-product synthesis. Theor Popul Biol. 1995;48(2):222–234. https://doi.org/10.1006/tpbi.1995.1027. DOI
Taniguchi Y, Choi PJ, Li GW, et al.. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–538. https://doi.org/10.1126/science.1188308. PubMed DOI PMC
Tu Y. The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell's demons. PNAS. 2008;105(33):11737–11741. https://doi.org/10.1073/pnas.0804641105. PubMed DOI PMC
Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008b;135(2):216–226. https://doi.org/10.1016/j.cell.2008.09.050. PubMed DOI PMC
Singer ZS, Yong J, Tischler J, et al.. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Molecular Cell. 2014;55:319–331. https://doi.org/10.1016/j.molcel.2014.06.029. PubMed DOI PMC
Sherman MS, Lorenz K, Lanier MH, et al.. Cell-to-cell variability in the propensity to transcribe explains correlated fluctuations in gene expression. Cell Systems. 2015;1:315–325. https://doi.org/10.1016/j.cels.2015.10.011. PubMed DOI PMC
Harper CV, Finkenstädt B, Woodcock DJ, et al.. Dynamic analysis of stochastic transcription cycles. PLoS Biol. 2011;9(4):e1000607. https://doi.org/10.1371/journal.pbio.1000607. PubMed DOI PMC
Hager GL, Elbi C, Johnson TA, et al.. Chromatin dynamics and the evolution of alternate promoter states. Chromosome Res. 2006;14:107–116. https://doi.org/10.1007/s10577-006-1030-0. PubMed DOI
Metivier R, Penot G, Hubner MR, et al.. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003;115:751–763. https://doi.org/10.1016/S0092-8674(03)00934-6. PubMed DOI
Shang YF, Hu X, DiRenzo J, et al.. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell. 2000;103:843–852. https://doi.org/10.1016/S0092-8674(00)00188-4. PubMed DOI
Sharma D, Fondell JD. Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo. Proc Natl Acad Sci USA. 2002;99:7934–7939. https://doi.org/10.1073/pnas.122004799. PubMed DOI PMC
Zoller B, Nicolas D, Molina N, et al.. Structure of silent transcription intervals and noise characteristics of mammalian genes. Mol Syst Biol. 2015;11(7):823. https://doi.org/10.15252/msb.20156257. PubMed DOI PMC
Larson DR, Fritzsch C, Sun L, et al.. Direct observation of frequency modulated transcription in single cells using light activation. eLife. 2013;2:e00750. https://doi.org/10.7554/eLife.00750. PubMed DOI PMC
Senecal A, Munsky B, Proux F, et al.. Transcription factors modulate c-Fos transcriptional bursts. Cell Rep. 2014;8:75–83. https://doi.org/10.1016/j.celrep.2014.05.053. PubMed DOI PMC
Voss TC, Hager GL. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet. 2013;15:69–81. https://doi.org/10.1038/nrg3623. PubMed DOI PMC
Newman JR, Ghaemmaghami S, Ihmels J, et al.. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature. 2006;441:840–846. https://doi.org/10.1038/nature04785. PubMed DOI
Hnisz D, Shrinivas K, Young RA, et al.. A phase separation model for transcriptional control. Cell. 2017;169(1):13–23. https://doi.org/10.1016/j.cell.2017.02.007. PubMed DOI PMC
Jonkers I, Kwak H, Lis JT. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife. 2014;3:e02407. https://doi.org/10.7554/eLife.02407. PubMed DOI PMC
Core LJ, Lis JT. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science. 2008;319(5871):1791–1792. https://doi.org/10.1126/science.1150843. PubMed DOI PMC
Rahl PB, Lin CY, Seila AC, et al.. c-Myc regulates transcriptional pause release. Cell. 2010;141(3):432–445. https://doi.org/10.1016/j.cell.2010.03.030. PubMed DOI PMC
Birse CE, Lee BA, Hansen K, et al.. Transcriptional termination signals for RNA polymerase II in fission yeast. EMBO J. 1997;16(12):3633–3643. https://doi.org/10.1093/emboj/16.12.3633. PubMed DOI PMC
Edenberg ER, Downey M, Toczyski D. Polymerase stalling during replication, transcription and translation. Curr Biol. 2014;24(10):445–452. https://doi.org/10.1016/j.cub.2014.03.060. PubMed DOI
Herbert KM, La Porta A, Wong BJ, et al.. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell. 2006;125(6):1083–1094. https://doi.org/10.1016/j.cell.2006.04.032. PubMed DOI PMC
Shaevitz JW, Abbondanzieri EA, Landick R, et al.. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature. 2003;426(6967):684–687. https://doi.org/10.1038/nature02191. PubMed DOI PMC
Zenkin N, Yuzenkova Y, Severinov K. Transcript-assisted transcriptional proofreading. Science. 2006;313(5786):518–520. https://doi.org/10.1126/science.1127422. PubMed DOI
Greive SJ, von Hippel PH. Thinking quantitatively about transcriptional regulation. Nat Rev Mol Cell Biol. 2005;6(3):221–232. https://doi.org/10.1038/nrm1588. PubMed DOI
Golding I. Decision making in living cells: lessons from a simple system. Annu Rev Biophys. 2011;40:63–80. https://doi.org/10.1146/annurev-biophys-042910-155227. PubMed DOI PMC
Schibler U, Marcu KB, Perry RP. The synthesis and processing of the messenger RNAs specifying heavy and light chain immunoglobulins in MPC-11 cells. Cell. 1978;15(4):1495–1509. https://doi.org/10.1016/0092-8674(78)90072-7. PubMed DOI
Dey SS, Foley JE, Limsirichai P, et al.. Orthogonal control of expression mean and variance by epigenetic features at different genomic loci. Mol Syst Biol. 2015;11(5):806. https://doi.org/10.15252/msb.20145704. PubMed DOI PMC
Cai L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level. Nature. 2006;440:358–362. https://doi.org/10.1038/nature04599. PubMed DOI
Selinger DW, Saxena RM, Cheung KJ, et al.. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 2003;13:216–223. https://doi.org/10.1101/gr.912603. PubMed DOI PMC
Mata J, Marguerat S, Bahler J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci. 2005;30:506–514. https://doi.org/10.1016/j.tibs.2005.07.005. PubMed DOI
Belle A, Tanay A, Bitincka L, et al.. Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA. 2006;103:13004–13009. https://doi.org/10.1073/pnas.0605420103. PubMed DOI PMC
Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature. 2010;467:167–173. https://doi.org/10.1038/nature09326. PubMed DOI PMC
Maamar H, Raj A, Dubnau D. Noise in gene expression determines cell fate in Bacillus subtilis. Science. 2007;317:526–529. https://doi.org/10.1126/science.1140818. PubMed DOI PMC
Zong C, So LH, Sepulveda LA, et al.. Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol Syst Biol. 2010;6:440. https://doi.org/10.1038/msb.2010.96. PubMed DOI PMC
Balaban NQ, Merrin J, Chait R, et al.. Bacterial persistence as a phenotypic switch. Science. 2004;305(5690):1622–1625. https://doi.org/10.1126/science.1099390. PubMed DOI
Brock A, Chang H, Huang S. Non-genetic heterogeneity–a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet. 2009;10(5):336–342. https://doi.org/10.1038/nrg2556. PubMed DOI
Sharma SV, Lee DY, Li B, et al.. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141(1):69–80. https://doi.org/10.1016/j.cell.2010.02.027. PubMed DOI PMC
Chalancon G, Ravarani CN, Balaji S, et al.. Interplay between gene expression noise and regulatory network architecture. Trends Genet. 2012;28(5):221–232. https://doi.org/10.1016/j.tig.2012.01.006. PubMed DOI PMC
Sigal A, Milo R, Cohen A, et al.. Variability and memory of protein levels in human cells. Nature. 2006;444:643–646. https://doi.org/10.1038/nature05316. PubMed DOI
Chubb JR. Gene regulation: stable noise. Curr Biol. 2016;26(2):R61–R64. https://doi.org/10.1016/j.cub.2015.12.002. PubMed DOI
Wernet MF, Mazzoni EO, Celik A, et al.. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature. 2006;440:174–180. https://doi.org/10.1038/nature04615. PubMed DOI PMC
Lesch BJ, Gehrke AR, Bulyk ML, et al.. Transcriptional regulation and stabilization of left-right neuronal identity in C. elegans. Genes Dev. 2009;23:345–358. https://doi.org/10.1101/gad.1763509. PubMed DOI PMC
Wang L, Walker BL, Iannaccone S, et al.. Bistable switches control memory and plasticity in cellular differentiation. Proc Natl Acad Sci USA. 2009;106:6638–6643. https://doi.org/10.1073/pnas.0806137106. PubMed DOI PMC
Paulsson J, Nordström K, Ehrenberg M. Requirements for rapid plasmid ColE1 copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates. Plasmid. 1998;39(3):215–234. https://doi.org/10.1006/plas.1998.1338. PubMed DOI
Paulsson J, Ehrenberg M. Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys Rev Lett. 2000;84(23):5447–5450. https://doi.org/10.1103/PhysRevLett.84.5447. PubMed DOI
El-Samad H, Khammash M. Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks. Biophys J. 2006;90(10):3749–3761. https://doi.org/10.1529/biophysj.105.060491. PubMed DOI PMC
Coulon A, Ferguson ML, de Turris V, et al.. Kinetic competition during the transcription cycle results in stochastic RNA processing. Elife. 2014;3:e03939. https://doi.org/10.7554/eLife.03939. PubMed DOI PMC
Mayer A, Landry HM, Churchman LS. Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol. 2017;46:72–80. https://doi.org/10.1016/j.ceb.2017.03.002. PubMed DOI PMC
Nicolas D, Phillips NE, Naef F. What shapes eukaryotic transcriptional bursting? Mol BioSyst. 2017;13:1280. https://doi.org/10.1039/C7MB00154A. PubMed DOI