Validation of a novel automatic deposition of bacteria and yeasts on MALDI target for MALDI-TOF MS-based identification using MALDI Colonyst robot

. 2017 ; 12 (12) : e0190038. [epub] 20171229

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid29287094

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) -based identification of bacteria and fungi significantly changed the diagnostic process in clinical microbiology. We describe here a novel technique for bacterial and yeast deposition on MALDI target using an automated workflow resulting in an increase of the microbes' score of MALDI identification. We also provide a comparison of four different sample preparation methods. In the first step of the study, 100 Gram-negative bacteria, 100 Gram-positive bacteria, 20 anaerobic bacteria and 20 yeasts were spotted on the MALDI target using manual deposition, semi-extraction, wet deposition onto 70% formic acid and by automatic deposition using MALDI Colonyst. The lowest scores were obtained by manual toothpick spotting which significantly differ from other methods. Identification score of semi-extraction, wet deposition and automatic wet deposition did not significantly differ using calculated relative standard deviation (RSD). Nevertheless, the best results with low error rate have been observed using MALDI Colonyst robot. The second step of validation included processing of 542 clinical isolates in routine microbiological laboratory by a toothpick direct spotting, on-plate formic acid extraction (for yeasts) and automatic deposition using MALDI Colonyst. Validation in routine laboratory process showed significantly higher identification scores obtained using automated process compared with standard manual deposition in all tested microbial groups (Gram-positive, Gram-negative, anaerobes, and yeasts). As shown by our data, automatic colony deposition on MALDI target results in an increase of MALDI-TOF MS identification scores and reproducibility.

Zobrazit více v PubMed

Croxatto A, Prod’hom G, Faverjon F, Rochais Y, Greub G. Laboratory automation in clinical bacteriology: what system to choose? Clinical Microbiology and Infection. 2016; 22: 217–235. doi: 10.1016/j.cmi.2015.09.030 PubMed DOI

Ledeboer NA, Dallas SD. The Automated Clinical Microbiology Laboratory: Fact or Fantasy? Journal of Clinical Microbiology. 2014; 52: 3140–3146. doi: 10.1128/JCM.00686-14 PubMed DOI PMC

Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clinical Microbiology Reviews. 2014; 27: 783–822. doi: 10.1128/CMR.00003-14 PubMed DOI PMC

Lay JO. MALDI-TOF mass spectrometry of bacteria. Mass Spectrometry Reviews. 2001; 20: 172–194. doi: 10.1002/mas.10003 PubMed DOI

Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clinical Chemistry 2015; 61: 100–111. doi: 10.1373/clinchem.2014.221770 PubMed DOI

Fournier PE, Drancourt M, Colson P, Rolain JM, La Scola B, Raoult D. Modern clinical microbiology: new challenges and solutions. Nature Reviews Microbiology. 2013; 11: 574–85. PubMed PMC

Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clinical Microbiology Reviews. 2013; 26: 547–603. doi: 10.1128/CMR.00072-12 PubMed DOI PMC

Amlerová J, Studentová V, Hrabák J. Identification of Mycobacterium spp. isolates using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Epidemiol Mikrobiol Imunol. 2014; 63: 196–199. PubMed

Hrabák J, Chudácková E, Walková R. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013; 26: 103–114. doi: 10.1128/CMR.00058-12 PubMed DOI PMC

Maxson T, Taylor-Howell CL, Minogue TD. Semi-quantitative MALDI-TOF for antimicrobial susceptibility testing in Staphylococcus aureus. PLoS One. 2017; 12: e0183899 doi: 10.1371/journal.pone.0183899 PubMed DOI PMC

Jung JS, Eberl T, Sparbier K, Lange C, Kostrzewa M, Schubert S, et al. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur J Clin Microbiol Infect. Dis. 2014; 33: 949–955. doi: 10.1007/s10096-013-2031-5 PubMed DOI

De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol. 2012; 50: 2479–2483. doi: 10.1128/JCM.00224-12 PubMed DOI PMC

Arca-Suárez J, Galán-Sánchez F, Marin-Casanova P, Rodríguez-Iglesias MA. Direct identification of microorganisms from thioglycolate broth by MALDI-TOF MS. PLoS One. 2017; 12: e0185229 doi: 10.1371/journal.pone.0185229 PubMed DOI PMC

Faron ML, Buchan BW, Ledeboer NA. Matrix-Assisted Desorption Ionization Time of Flight Mass Spectrometry for the Use with Positive Blood Cultures: Methodology, Performance, and Optimization. J Clin Microbiol. 2017 PubMed PMC

Huang B, Zhang L, Zhang W, Liao K, Zhang S, Zhang Z, et al. Direct Detection and Identification of Bacterial Pathogens from Urine with Optimized Specimen Processing and Enhanced Testing Algorithm. J Clin Microbiol. 2017; 55:1488–1495. doi: 10.1128/JCM.02549-16 PubMed DOI PMC

Kalb SR, Boyer AE, Barr JR. Kalb SR, Boyer AE, Barr JR. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity. Toxins (Basel). 2015; 7: 3497–511. PubMed PMC

Dauwalder O, Landrieve L, Laurent F, de Montclos M, Vandenesch F, Lina G. Does bacteriology laboratory automation reduce time to results and increase quality management? Clinical Microbiology and Infection. 2016; 22: 236–243. doi: 10.1016/j.cmi.2015.10.037 PubMed DOI

Bland JM, Altman DG. Statistics notes: Measurement error. British Medical Journal. 1996; 312: 1654. PubMed

Theel ES, Schmitt BH, Hall L, Cunningham SA, Walchak RC, Patel R, et al. Formic acid-based direct, on-plate testing of yeast and Corynebacterium species by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology. 2012; 50: 3093–3095. doi: 10.1128/JCM.01045-12 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace