Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29293873
PubMed Central
PMC6215044
DOI
10.1093/aob/mcx178
PII: 4774595
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika metabolismus MeSH
- buněčná stěna metabolismus MeSH
- komplex proteinů 2-3 souvisejících s aktinem genetika metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplex proteinů 2-3 souvisejících s aktinem MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
BACKGROUND AND AIM: The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. METHODS: In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. KEY RESULTS: ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. CONCLUSIONS: The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport.
Institut Jean Pierre Bourgin INRA AgroParisTech CNRS Université Paris Saclay Versailles France
Institute of Experimental Botany AS CR Rozvojová Czech Republic
Zobrazit více v PubMed
Baluška F, Salaj J, Mathur J et al. . 2000. Root hair formation: f-actin-dependent tip growth is initiated by local assembly of profilin-supported f-actin meshworks accumulated within expansin-enriched bulges. Developmental Biology 227: 618–632. PubMed
Baluska F, Jasik J, Edelmann HG, Salajova T, Volkmann D. 2001. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. Developmental Biology 231: 113–124. PubMed
Barbez E, Dünser K, Gaidora A, Lendl T, Busch W. 2017. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 114: E4884–E4893. PubMed PMC
Basu D, El-Assal SED, Le J, Mallery EL, Szymanski DB. 2004. Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131: 4345–4355. PubMed
Basu D, Le J, El Essal SED et al. . 2005. DISTORTED3/SCAR2 is a putative arabidopsis WAVE complex subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis. Plant Cell 17: 502–524. PubMed PMC
Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB. 2008. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proceedings of the National Academy of Sciences of the United States of America 105: 4044–4049. PubMed PMC
Bennett T, Hines G, van Rongen M et al. . 2016. Connective auxin transport in the shoot facilitates communication between shoot apices. Plos Biology 14: e1002446. PubMed PMC
Bischoff V, Cookson SJ, Wu S, Scheible WR. 2009. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. Journal of Experimental Botany 60: 955–965. PubMed PMC
Bouton S, Leboeuf E, Mouille G et al. . 2002. Quasimodo1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14: 2577–2590. PubMed PMC
Brabham C, Lei L, Gu Y, Stork J, Barrett M, Debolt S. 2014. Indaziflam herbicidal action: a potent cellulose biosynthesis inhibitor. Plant Physiology 166: 1177. PubMed PMC
Braybrook SA, Peaucelle A. 2013. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. Plos One 8: e57813. PubMed PMC
Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M. 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant Journal 34: 351–362. PubMed
Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews. Molecular Cell Biology 6: 850–861. PubMed
Delbarre A, Muller P, Imhoff V, Guern J. 1996. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532–541. PubMed
Desprez T, Vernhettes S, Fagard M et al. . 2002. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiology 128: 482–490. PubMed PMC
Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG. 2006. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133: 1091–1100. PubMed
Durst S, Nick P, Maisch J. 2013. Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning. Journal of Plant Physiology 170: 1057–1066. PubMed
Dyachok J, Shao MR, Vaughn K et al. . 2008. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Molecular Plant 1: 990–1006. PubMed
Dyachok J, Zhu L, Liao FQ, He J, Huq E, Blancaflor EB. 2011. SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. Plant Cell 23: 3610–3626. PubMed PMC
Eggenberger K, Sanyal P, Hundt S, Wadhwani P, Ulrich AS, Nick P. 2017. Challenge integrity: the cell-penetrating peptide BP100 interferes with the auxin-actin oscillator. Plant and Cell Physiology 58: 71–85. PubMed
El-Assal SED, Le J, Basu D, Mallery EL, Szymanski DB. 2004a. Distorted2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant Journal 38: 526–538. PubMed
El-Assal SE-D, Le J, Basu D, Mallery EL, Szymanski DB. 2004b. Arabidopsis GNARLED encodes a NAP125 homolog that positively regulates ARP2/3. Current Biology 14: 1405–1409. PubMed
Fabregas N, Formosa-Jordan P, Confraria A et al. . 2015. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana. Plos Genetics 11: e1005183. PubMed PMC
Fendrych M, Leung J, Friml J. 2016. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. Elife 5: e19048. PubMed PMC
Feraru E, Feraru MI, Kleine-Vehn J et al. . 2011. PIN polarity maintenance by the cell wall in Arabidopsis. Current Biology 21: 338–343. PubMed
Fu Y, Li H, Yang ZB. 2002. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14: 777–794. PubMed PMC
Fu Y, Gu Y, Zheng ZL, Wasteneys G, Yang ZB. 2005. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120: 687–700. PubMed
Galweiler L, Guan CH, Muller A et al. . 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226–2230. PubMed
Gendre D, Jonsson K, Boutte Y, Bhalerao RP. 2015. Journey to the cell surface-the central role of the trans-Golgi network in plants. Protoplasma 252: 385–398. PubMed
Hager A, Debus G, Edel HG, Stransky H, Serrano R. 1991. Auxin induces exocytosis and the rapid synthesis of a high turnover pool of plasma-membrane H+-ATPase. Planta 185: 527–537. PubMed
Harholt J, Jensen JK, Sorensen SO, Orfila C, Pauly M, Scheller HV. 2006. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiology 140: 49–58. PubMed PMC
Havelkova L, Nanda G, Martinek J et al. . 2015. Arp2/3 complex subunit ARPC2 binds to microtubules. Plant Science 241: 96–108. PubMed
Hepler PK, Winship LJ. 2015. The pollen tube clear zone: clues to the mechanism of polarized growth. Journal of Integrative Plant Biology 57: 79–92. PubMed
Kandasamy MK, McKinney EC, Meagher RB. 2009. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21: 701–718. PubMed PMC
Ketelaar T. 2013. The actin cytoskeleton in root hairs: all is fine at the tip. Current Opinion in Plant Biology 16: 749–756. PubMed
Kim SJ, Brandizzi F. 2014. The plant secretory pathway: an essential factory for building the plant cell wall. Plant and Cell Physiology 55: 687–693. PubMed
Klahre U, Chua NH. 1999. The Arabidopsis ACTIN-RELATED PROTEIN 2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Molecular Biology 41: 65–73. PubMed
Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal SE, Szymanski DB. 2009. The Association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. Plant Physiology 151: 2095–2109. PubMed PMC
Krupková E, Immerzeel P, Pauly M et al. . 2007. The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant Journal 50: 735–750. PubMed
Lanza M, Garcia-Ponce B, Castrillo G et al. . 2012. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Developmental Cell 22: 1275–1285. PubMed
Le J, El Assal SED, Basu D, Saad ME, Szymanski DB. 2003. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Current Biology 13: 1341–1347. PubMed
Le J, Mallery EL, Zhang CH, Brankle S, Szymanski DB. 2006. Arabidopsis BRICK1/HSPC300 is an essential WAVE-complex subunit that selectively stabilizes the Arp2/3 activator SCAR2. Current Biology 16: 895–901. PubMed
Ledbetter MC, Porter KR. 1963. A “microtubule” in plant cell fine structure. The Journal of Cell Biology 19: 239–50. PubMed PMC
Lewis DR, Muday GK. 2009. Measurement of auxin transport in Arabidopsis thaliana. Nature Protocols 4: 437–451. PubMed
Li SD, Blanchoin L, Yang ZB, Lord EM. 2003. The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiology 132: 2034–2044. PubMed PMC
Li S, Lei L, Somerville CR, Gu Y. 2012. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proceedings of the National Academy of Sciences USA 109: 185–190. PubMed PMC
Li X, Li JH, Wang W et al. . 2014. ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis. Plant Cell and Environment 37: 1548–1560. PubMed
Li YH, Sorefan K, Hemmann G, Bevan MW. 2004. Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiology 136: 3616–3627. PubMed PMC
Mathur J, Spielhofer P, Kost B, Chua NH. 1999. The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126: 5559–5568. PubMed
Mathur J, Mathur N, Kernebeck B, Hulskamp M. 2003a. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15: 1632–1645. PubMed PMC
Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hulskamp M. 2003b. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130: 3137–3146. PubMed
Mouille G, Ralet MC, Cavelier C et al. . 2007. Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant Journal 50: 605–614. PubMed
Nakayama N, Smith RS, Mandel T et al. . 2012. Mechanical regulation of auxin-mediated growth. Current Biology 22: 1468–1476. PubMed
Neumetzler L, Humphrey T, Lumba S et al. . 2012. The FRIABLE1 gene product affects cell adhesion in Arabidopsis. Plos One 7: e42914. PubMed PMC
Nick P. 2009. Probing the actin-auxin oscillator. Plant Signal Behavior 5: 94–98. PubMed PMC
Nolen BJ, Pollard TD. 2007. Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex. Molecular Cell 26: 449–457. PubMed PMC
Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y. 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. The Plant Cell 3: 677–684. PubMed PMC
Paque S, Mouille G, Grandont L et al. . 2014. AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in arabidopsis. The Plant Cell 26: 280–95. PubMed PMC
Paredez AR, Somerville CR, Ehrhardt DW. 2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495. PubMed
Parry G, Delbarre A, Marchant A et al. . 2001. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant Journal 25: 399–406. PubMed
Peremyslov VV, Prokhnevsky AI, Dolja VV. 2010. Class XI myosins are required for development, cell expansion, and F-actin organization in Arabidopsis. Plant Cell 22: 1883–1897. PubMed PMC
Peremyslov VV, Cole RA, Fowler JE, Dolja VV. 2015. Myosin-powered membrane compartment drives cytoplasmic streaming, cell expansion and plant development. Plos One 10: e0139331. PubMed PMC
Pitaksaringkarn W, Matsuoka K, Asahina M et al. . 2014. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant Journal 80: 604–614. PubMed
Qiu JL, Jilk R, Marks MD, Szymanski DB. 2002. The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14: 101–118. PubMed PMC
Qiu L, Lin JS, Xu J et al. . 2015. SCARN a novel class of SCAR protein that is required for root-hair infection during legume nodulation. PLoS Genetics 11: 1–27. PubMed PMC
Ranocha P, Denancé N, Vanholme R et al. . 2010. Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. The Plant Journal 63: 469–483. PubMed
Ranocha P, Dima O, Nagy R et al. . 2013. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications 4: 2625. PubMed PMC
Ren H, Dang X, Yang Y et al. . 2016. SPIKE1 activates ROP GTPase to modulate petal growth and shape. Plant physiology 172: 358–371. PubMed PMC
Rounds CM, Hepler PK, Winship LJ. 2014. The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiology 166: 139–151. PubMed PMC
Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hulskamp M, Mathur J. 2004a. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. Plant and Cell Physiology 45: 813–822. PubMed
Saedler R, Zimmermann I, Mutondo M, Hulskamp M. 2004b. The Arabidopsis KLUNKER gene controls cell shape changes and encodes the AtSRA1 homolog. Plant Molecular Biology 56: 775–782. PubMed
Sampathkumar A, Krupinski P, Wightman R et al. . 2014. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. Elife 3: e01967. PubMed PMC
Sampathkumar A, Gutierrez R, McFarlane HE et al. . 2013. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiology 162: 675–688. PubMed PMC
Shao W, Dong J. 2016. Polarity in plant asymmetric cell division: division orientation and cell fate differentiation. Developmental Biology 419: 121–131. PubMed PMC
Scholl RL, May ST, Ware DH. 2000. Seed and molecular resources for Arabidopsis. Plant Physiology 124: 1477–1480. PubMed PMC
Schwab B, Mathur J, Saedler RR et al. . 2003. Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Molecular Genetics and Genomics 269: 350–360. PubMed
Soukup A. 2014. Selected simple methods of plant cell wall histochemistry and staining for light microscopy. In: Zarsky Viktor CF, eds. Plant cell morphogenesis: methods and protocols. Totowa, NJ: Humana Press, 25–40. PubMed
Swarup R, Kargul J, Marchant A et al. . 2004. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16: 3069–3083. PubMed PMC
Szymanski DB, Cosgrove DJ. 2009. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Current Biology 19: R800–R811. PubMed
Szymanski DB, Marks MD, Wick SM. 1999. Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11: 2331–2347. PubMed PMC
Takahashi K, Hayashi K, Kinoshita T. 2012. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiology 159: 632. PubMed PMC
Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. 1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971. PubMed PMC
Updegraff DM. 1969. Semimicro determination of cellulose in biological materials. Analytical Biochemistry 32: 420–424. PubMed
Van Gestel K, Slegers H, Von Witsch M et al. . 2003. Immunological evidence for the presence of plant homologues of the actin-related protein Arp3 in tobacco and maize: subcellular localization to actin-enriched pit fields and emerging root hairs. Protoplasma 222: 45–52. PubMed
Vazquez LAB, Sanchez R, Hernandez-Barrera A et al. . 2014. Actin polymerization drives polar growth in Arabidopsis root hair cells. Plant Signaling & Behavior 9: e29401. PubMed PMC
Wang PW, Richardson C, Hawes C, Hussey PJ. 2016. Arabidopsis NAP1 regulates the formation of autophagosomes. Current Biology 26: 2060–2069. PubMed
Xu T, Dai N, Chen J et al. . 2014. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343: 1025–1028. PubMed PMC
Yanagisawa M, Desyatova AS, Belteton SA, Mallery EL, Turner JA, Szymanski DB. 2015. Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nature Plants 1: 1–8. PubMed
Zhang C, Mallery EL, Schlueter J et al. . 2008. Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. Plant Cell 20: 995–1011. PubMed PMC
Zhang C, Mallery E, Reagan S, Boyko VP, Kotchoni SO, Szymanski DB. 2013a. The Endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. Plant Physiology 162: 689–706. PubMed PMC
Zhang C, Mallery EL, Szymanski D. 2013b. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Frontiers in Plant Science 4: 238. PubMed PMC
Zhang XG, Dyachok J, Krishnakumar S, Smith LG, Oppenheimer DG. 2005. IRREGULAR TRICHOME BRANCH1 in Arabidopsis encodes a plant homolog of the actin-related protein2/3 complex activator Scar/WAVE that regulates actin and microtubule organization. Plant Cell 17: 2314–2326. PubMed PMC
Zhu J, Geisler M. 2015. Keeping it all together: auxin-actin crosstalk in plant development. Journal of Experimental Botany 66: 4983–4998. PubMed
Zou JJ, Zheng ZY, Xue S, Li HH, Wang YR, Le J. 2016. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism. Journal of Experimental Botany 67: 5325–5337. PubMed PMC
Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth