Combined effects of insecticide exposure and predation risk on freshwater detritivores
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
SFRH/BPD/103897/2014
Fundação para a Ciência e a Tecnologia
SFRH/BPD/94494/2013
Fundação para a Ciência e a Tecnologia
SFRH/BD/79424/2011
Fundação para a Ciência e a Tecnologia
PTDC/AAC-AMB/119433/2010
Fundação para a Ciência e a Tecnologia
CZ.1.05/2.1.00/01.0024
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
29313302
DOI
10.1007/s10646-017-1887-z
PII: 10.1007/s10646-017-1887-z
Knihovny.cz E-resources
- Keywords
- Chlorantraniliprole, Detritivore invertebrates, Leaf decomposition, Predation risk,
- MeSH
- Chironomidae drug effects growth & development physiology MeSH
- Insecta drug effects growth & development physiology MeSH
- Insecticides toxicity MeSH
- Larva drug effects growth & development physiology MeSH
- Plant Leaves MeSH
- Nymph drug effects growth & development physiology MeSH
- Alnus MeSH
- ortho-Aminobenzoates toxicity MeSH
- Food Chain * MeSH
- Predatory Behavior * MeSH
- Feeding Behavior drug effects MeSH
- Odonata growth & development physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- chlorantranilipole MeSH Browser
- Insecticides MeSH
- ortho-Aminobenzoates MeSH
Insecticides usually present in low concentrations in streams are known to impair behaviour and development of non-target freshwater invertebrates. Moreover, there is growing awareness that the presence of natural stressors, such as predation risk may magnify the negative effects of pesticides. This is because perception of predation risk can by itself lead to changes on behaviour and physiology of prey species. To evaluate the potential combined effects of both stressors on freshwater detritivores we studied the behavioural and developmental responses of Chironomus riparius to chlorantraniliprole (CAP) exposure under predation risk. Also, we tested whether the presence of a shredder species would alter collector responses under stress. Trials were conducted using a simplified trophic chain: Alnus glutinosa leaves as food resource, the shredder Sericostoma vittatum and the collector C. riparius. CAP toxicity was thus tested under two conditions, presence/absence of the dragonfly predator Cordulegaster boltonii. CAP exposure decreased leaf decomposition. Despite the lack of significance for interactive effects, predation risk marginally modified shredder effect on leaf decomposition, decreasing this ecosystem process. Shredders presence increased leaf decomposition, but impaired chironomids performance, suggesting interspecific competition rather than facilitation. C. riparius growth rate was decreased independently by CAP exposure, presence of predator and shredder species. A marginal interaction between CAP and predation risk was observed regarding chironomids development. To better understand the effects of chemical pollution to natural freshwater populations, natural stressors and species interactions must be taken into consideration, since both vertical and horizontal species interactions play their role on response to stress.
Department of Biology and CESAM University of Aveiro Aveiro Portugal
See more in PubMed
Oecologia. 2003 Mar;134(4):554-9 PubMed
Aquat Toxicol. 2013 May 15;132-133:92-9 PubMed
Environ Int. 2009 Aug;35(6):971-86 PubMed
Environ Sci Pollut Res Int. 2017 Jul;24(21):17394-17406 PubMed
Mar Environ Res. 2012 Aug;79:1-15 PubMed
Oecologia. 2016 Jun;181(2):347-57 PubMed
Environ Pollut. 2008 Dec;156(3):1112-20 PubMed
Environ Pollut. 2018 Feb;233:226-234 PubMed
Sci Total Environ. 2010 Aug 15;408(18):3746-62 PubMed
Oecologia. 2015 Mar;177(3):775-784 PubMed
Oecologia. 2014 Sep;176(1):225-35 PubMed
Aquat Toxicol. 2009 Jun 28;93(2-3):138-49 PubMed
Environ Pollut. 2017 Jul;226:79-88 PubMed
Sci Total Environ. 2007 Sep 1;382(2-3):272-85 PubMed
Pest Manag Sci. 2013 Jan;69(1):7-14 PubMed
Bioorg Med Chem Lett. 2007 Nov 15;17(22):6274-9 PubMed
Environ Sci Pollut Res Int. 2016 Jul;23(14):14068-77 PubMed
Pest Manag Sci. 2009 Sep;65(9):969-74 PubMed
Ecol Lett. 2006 Oct;9(10):1157-71 PubMed
Trends Ecol Evol. 2010 Jun;25(6):372-80 PubMed
Ecol Appl. 2007 Oct;17(7):2111-22 PubMed
Sci Total Environ. 2015 Mar 1;508:506-13 PubMed
PLoS One. 2008 Jun 18;3(6):e2465 PubMed
Environ Toxicol Chem. 2002 Nov;21(11):2507-13 PubMed
Ecotoxicology. 2014 Jul;23(5):830-9 PubMed
Environ Toxicol Chem. 2017 Jun;36(6):1584-1591 PubMed
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5750-5 PubMed
Ecology. 2008 Sep;89(9):2416-25 PubMed
Aquat Toxicol. 2014 Oct;155:236-43 PubMed
Environ Pollut. 2012 Apr;163:127-33 PubMed
Environ Sci Technol. 2015 Mar 17;49(6):3922-9 PubMed
Ecotoxicology. 2012 Oct;21(7):1857-66 PubMed
Bioorg Med Chem. 2009 Jun 15;17(12):4127-33 PubMed