The immediate and long-term effects of time perspective on Internet gaming disorder
Jazyk angličtina Země Maďarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29313730
PubMed Central
PMC6035029
DOI
10.1556/2006.6.2017.089
Knihovny.cz E-zdroje
- Klíčová slova
- Internet gaming disorder, longitudinal, massive multiplayer role-playing games, time perspective,
- MeSH
- dítě MeSH
- dospělí MeSH
- internet * MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- následné studie MeSH
- návykové chování psychologie MeSH
- senioři MeSH
- videohry * MeSH
- vnímání času * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Backgrounds and aims This study focuses on the role of time perspective (TP) in Internet gaming disorder (IGD). An inventory-based study on 377 massive multiplayer online role playing game players was conducted, followed by a 3-year-follow-up in which 48 active players from the original sample participated. We proposed that TP factors (negative TP and future positive TP) will influence either the current presence of IGD symptoms or the further development of IGD over time. In other words, the effect of TP is stable. Finally, game usage patterns were analyzed in the sense of changes in playing time and IGD symptoms in gamers after 3 years. Methods To access the variables, two scales were administered through online inventory, the Zimbardo Time Perspective Inventory-short, and Charlton and Danforths' Core Addiction Scale, both in 2012 (N = 377) and 2015 (N = 48). The amount of time that gamers usually spent playing were obtained through self-reports. Results The study's primary presumptions were confirmed. Both negative TP and future positive TP were confirmed as significant predictors of the presence of IGD symptoms, either immediately or in the following 3 years. Data on game usage showed a significant decrease in playing time and IGD symptoms between year 0 and year 3 of the study.
1st Faculty of Medicine Department of Addictology Charles University Prague Czech Republic
Faculty of Education Department of Psychology Charles University Prague Czech Republic
Zobrazit více v PubMed
Allison S. E., von Wahlde L., Shockley T., Gabbard G. O. (2006). The development of the self in the era of the Internet and role-playing fantasy games. American Journal of Psychiatry, 163, 381–385. doi:10.1176/appi.ajp.163.3.381 PubMed DOI
American Psychiatric Association [APA]. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.
Apostolidis T., Fieulaine N., Soulé F. (2006). Future time perspective as predictor of cannabis use: Exploring the role of substance perception among French adolescents. Addictive Behaviors, 31(12), 2339–2343. doi:10.1016/j.addbeh.2006.03.008 PubMed DOI
Barnett J., Coulson M. (2010). Virtually real: A psychological perspective on massively multiplayer online games. Review of General Psychology, 14(2), 167–179. doi:10.1037/a0019442 DOI
Barnett E., Spruijt-Metz D., Unger J. B., Rohrbach L. A., Sun P., Sussman S. (2013). Bidirectional associations between future time perspective and substance use among continuation high-school students. Substance Use & Misuse, 48(8), 574–580. doi:10.3109/10826084.2013.787092 PubMed DOI PMC
Boniwell I., Zimbardo P. G. (2004). Balancing time perspective in pursuit of optimal functioning. In Linley P. A., Joseph S. (Eds.), Positive psychology in practice (pp. 165–178). Hoboken, NJ: Wiley.
Carelli M. G., Wiberg B., Wiberg M. (2011). Development and construct validation of the Swedish Zimbardo time perspective inventory. European Journal of Psychological Assessment, 27(4), 220–227. doi:10.1027/1015-5759/a000076 DOI
Castronova E. (2005). Synthetic worlds: The business and culture of online worlds. Chicago, IL: University of Chicago.
Charlton J. P., Danforth I. D. (2007). Distinguishing addiction and high engagement in the context of online game playing. Computers in Human Behavior, 23(3), 1531–1548. doi:10.1016/j.chb.2005.07.002 DOI
Chin W. W. (2010). How to write up and report PLS analyses. In Esposito Vinzi V., Chin W. W., Henseler J., Wang H. (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 655–690). Berlin/Heidelberg: Springer. doi:10.1007/978-3-540-32827-8_29 DOI
Cole S. H., Hooley J. M. (2013). Clinical and personality correlates of MMO gaming: Anxiety and absorption in problematic Internet use. Social Science Computer Review, 31(4), 424–436. doi:10.1177/0894439312475280 DOI
Dowling N. A., Quirk K. L. (2009). Screening for Internet dependence: Do the proposed diagnostic criteria differentiate normal from dependent Internet use? CyberPsychology & Behavior, 12(1), 21–27. doi:10.1089/cpb.2008.0162 PubMed DOI
Fu K. W., Chan W. S., Wong P. W., Yip P. S. (2010). Internet addiction: Prevalence, discriminant validity and correlates among adolescents in Hong Kong. The British Journal of Psychiatry, 196(6), 486–492. doi:10.1192/bjp.bp.109.075002 PubMed DOI
Griffiths M. D. (2010). The role of context in online gaming excess and addiction: Some case study evidence. International Journal of Mental Health and Addiction, 8(1), 119–125. doi:10.1007/s11469-009-9229-x DOI
Griffiths M. D., King D. L., Demetrovics Z. (2014). DSM-5 Internet gaming disorder needs a unified approach to assessment. Neuropsychiatry, 4(1), 1–4. doi:10.2217/npy.13.82 DOI
Griffiths M. D., van Rooij A. J., Kardefelt-Winther D., Starcevic V., Király O., Pallesen S., Müller K., Dreier M., Carras M., Prause N., King D. L., Aboujaoude E., Kuss D. J., Pontes H. M., Lopez Fernandez O., Nagygyorgy K., Achab S., Billieux J., Quandt T., Carbonell X., Ferguson C. J., Hoff R. A., Derevensky J., Haagsma M. C., Delfabbro P., Coulson M., Hussain Z., Demetrovics Z. (2016). Working towards an international consensus on criteria for assessing Internet gaming disorder: A critical commentary on Petry et al. (2014). Addiction, 111(1), 167–175. doi:10.1111/add.13057 PubMed DOI PMC
Haenlein M., Kaplan A. M. (2004). A beginner’s guide to partial least squares analysis. Understanding Statistics, 3(4), 283–297. doi:10.1207/s15328031us0304_4 DOI
Hall P. A., Fong G. T., Yong H. H., Sansone G., Borland R., Siahpush M. (2012). Do time perspective and sensation-seeking predict quitting activity among smokers? Findings from the International Tobacco Control (ITC) Four Country Survey. Addictive Behaviors, 37(12), 1307–1313. doi:10.1016/j.addbeh.2012.06.022 PubMed DOI PMC
Hodgins D. C., Engel A. (2002). Future time perspective in pathological gamblers. The Journal of nervous and mental disease, 190(11), 775–780. doi:10.1097/00005053-200211000-00008 PubMed DOI
Keough K. A., Zimbardo P. G., Boyd J. N. (1999). Who’s smoking, drinking, and using drugs? Time perspective as a predictor of substance use. Basic and Applied Social Psychology, 21(2), 149–164. doi:10.1207/S15324834BA210207 DOI
Kim M. G., Kim J. (2010). Cross-validation of reliability, convergent and discriminant validity for the Problematic Online Game Use Scale. Computers in Human Behavior, 26, 389–398. doi:10.1016/j.chb.2009.11.010 DOI
Király O., Tóth D., Urbán R., Demetrovics Z., Maraz A. (2017). Intense video gaming is not essentially problematic. Psychology of Addictive Behaviors, 31(7), 807–817. doi:10.1037/adb0000316 PubMed DOI
Košťál J., Klicperová-Baker M., Lukavská K., Lukavský J. (2016). Short version of the Zimbardo Time Perspective Inventory (ZTPI-short) with and without the future-negative scale, verified on nationally representative samples. Time & Society, 25(2), 169–192. doi:10.1177/0961463X15577254 DOI
Kuss D. J., Griffiths M. D. (2012). Internet gaming addiction: A systematic review of empirical research. International Journal of Mental Health and Addiction, 10(2), 278–296. doi:10.1007/s11469-011-9318-5 DOI
LaRose R., Lin C. A., Eastin M. S. (2003). Unregulated Internet usage: Addiction, habit, or deficient self-regulation. Media Psychology, 5(3), 225–253. doi:10.1207/S1532785XMEP0503_01. DOI
Lemmens J. S., Valkenburg P. M., Peter J. (2009). Development and validation of a Game Addiction Scale for adolescents. Media Psychology, 12(1), 77–95. doi:10.1080/15213260802669458 DOI
Lukavska K. (2012). Time perspective as a predictor of massive multiplayer online role-playing game playing. Cyberpsychology, Behavior, and Social Networking, 15(1), 50–54. doi:10.1089/cyber.2011.0171 PubMed DOI
Lukavská K., Hrabec O., Chrz V. (2016). The role of habits in massive multiplayer online role-playing game usage: Predicting excessive and problematic gaming through players’ sensitivity to situational cues. Cyberpsychology, Behavior, and Social Networking, 19(4), 277–282. doi:10.1089/cyber.2015.0495 PubMed DOI
Majamäki M., Hellman M. (2016). “When sense of time disappears” – Or does it? Online video gamers’ time management and time apprehension. Time & Society, 25(2), 355–373. doi:10.1177/0961463X15577265 DOI
Marks I. (1990). Behavioural (non-chemical) addictions. British Journal of Addiction, 85(11), 1389–1394. doi:10.1111/j.1360-0443.1990.tb01618.x PubMed DOI
Marlatt G. A., Baer J. S., Donovan D. M., Kivlahan D. R. (1988). Addictive behaviors: Etiology and treatment. Annual Review of Psychology, 39(1), 223–252. doi:10.1146/annurev.ps.39.020188.001255 PubMed DOI
Ng B. D., Wiemer-Hastings P. (2005). Addiction to the Internet and online gaming. CyberPsychology & Behavior, 8(2), 110–113. doi:10.1089/cpb.2005.8.110 PubMed DOI
Przepiorka A., Blachnio A. (2016). Time perspective in Internet and Facebook addiction. Computers in Human Behavior, 60, 13–18. doi:10.1016/j.chb.2016.02.045 DOI
R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from http://www.R-project.org/
Sanchez G. (2013). PLS path modeling with R. Berkeley, CA: Trowchez Editions.
Sansone G., Fong G. T., Hall P. A., Guignard R., Beck F., Mons U., Pötschke-Langer M., Hua-Hie Y., Thompson M. E., Omar M., Yuan J. (2013). Time perspective as a predictor of smoking status: Findings from the International Tobacco Control (ITC) Surveys in Scotland, France, Germany, China, and Malaysia. BMC Public Health, 13, 346. doi:10.1186/1471-2458-13-346 PubMed DOI PMC
Smahel D., Blinka L., Ledabyl O. (2008). Playing MMORPGs: Connections between addiction and identifying with a character. CyberPsychology & Behavior, 11(6), 715–718. doi:10.1089/cpb.2007.0210 PubMed DOI
Smyth J. M. (2007). Beyond self-selection in video game play: An experimental examination of the consequences of massively multiplayer online role-playing game play. CyberPsychology & Behavior, 10(5), 717–721. doi:10.1089/cpb.2007.9963 PubMed DOI
Tavakol M., Dennick R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55. doi:10.5116/ijme.4dfb.8dfd PubMed DOI PMC
Yee N. (2006). The psychology of massively multi-user online role-playing games: Motivations, emotional investment, relationships and problematic usage. In Schroeder R., Axelsson A. S. (Eds.), Avatars at work and play: Collaboration and interaction in shared virtual environments (pp. 187–207). Dordrecht, The Netherlands: Springer.
Young K. S. (1998). Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior, 1(3), 237–244. doi:10.1089/cpb.1998.1.237 DOI
Zimbardo P. G., Boyd J. N. (1999). Putting time in perspective: A valid, reliable individual-differences metric. Journal of Personality and Social Psychology, 77(6), 1271–1288. doi:10.1037/0022-3514.77.6.1271 DOI
Zimbardo P., Boyd J. (2008). The time paradox: The new psychology of time that will change your life. New York, NY: Simon and Schuster.