Experimental identification of non-classicality of noisy twin beams and other related two-mode states
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29362441
PubMed Central
PMC5780546
DOI
10.1038/s41598-018-19634-1
PII: 10.1038/s41598-018-19634-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Different non-classicality criteria expressed in the form of inequalities among intensity moments and elements of photon-number distributions are applied to noisy twin beams and other two-mode states obtained from a twin beam by using a beam splitter. Their performance in revealing the non-classicality is judged in comparison with the exact results provided by suitable entanglement and local non-classicality quantifiers. Whereas the non-classicality of noisy twin beams is always revealed by these criteria, not all the nonclassical states obtained at the output of the beam splitter can be identified by these experimentally easily reachable criteria.
Zobrazit více v PubMed
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
Wilde, M. M. Quantum Information Theory (Cambridge Univ. Press, Cambridge, 2013).
Braunstein SL, van Loock P. Quantum information with continuous variables. Rev. Mod. Phys. 2005;77:513–577. doi: 10.1103/RevModPhys.77.513. DOI
Weedbrook C, et al. Gaussian quantum information. Rev. Mod. Phys. 2012;84:621–669. doi: 10.1103/RevModPhys.84.621. DOI
Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
Peřina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, Dordrecht, 1991).
Kim MS, Son W, Bužek V, Knight PL. Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement. Phys. Rev. A. 2002;65:032323. doi: 10.1103/PhysRevA.65.032323. DOI
Lvovsky AI, Raymer MG. Continuous-variable optical quantum state tomography. Rev. Mod. Phys. 2009;81:299. doi: 10.1103/RevModPhys.81.299. DOI
Shchukin E, Vogel W. Universal measurement of quantum correlations of radiation. Phys. Rev. Lett. 2006;96:200403. doi: 10.1103/PhysRevLett.96.200403. PubMed DOI
Sperling J, Vogel W, Agarwal GS. Sub-binomial light. Phys. Rev. Lett. 2012;109:093601. doi: 10.1103/PhysRevLett.109.093601. PubMed DOI
Haderka O, Peřina J, Jr., Hamar M, Peřina J. Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion. Phys. Rev. A. 2005;71:033815. doi: 10.1103/PhysRevA.71.033815. DOI
Peřina J, Jr., Haderka O, Michálek V, Hamar M. State reconstruction of a multimode twin beam using photodetection. Phys. Rev. A. 2013;87:022108. doi: 10.1103/PhysRevA.87.022108. DOI
Arkhipov II, Peřina J, Jr., Haderka O, Michálek V. Experimental detection of nonclassicality of single-mode fields via intensity moments. Opt. Express. 2016;24:29496–29505. doi: 10.1364/OE.24.029496. PubMed DOI
Peřina J, Jr., Michálek V, Haderka O. Higher-order sub-Poissonian-like nonclassical fields: Theoretical and experimental comparison. Phys. Rev. A. 2017;96:033852. doi: 10.1103/PhysRevA.96.033852. DOI
Peřina J, Jr., Arkhipov II, Michálek V, Haderka O. Nonclassicality and entanglement criteria for bipartite optical fields characterized by quadratic detectors. Phys. Rev. A. 2017;96:043845. doi: 10.1103/PhysRevA.96.043845. DOI
Achilles D, Silberhorn C, Śliwa C, Banaszek K, Walmsley IA. Fiber-assisted detection with photon number resolution. Opt. Lett. 2003;28:2387–2389. doi: 10.1364/OL.28.002387. PubMed DOI
Fitch MJ, Jacobs BC, Pittman TB, Franson JD. Photon-number resolution using time-multiplexed single-photon detectors. Phys. Rev. A. 2003;68:043814. doi: 10.1103/PhysRevA.68.043814. DOI
Haderka O, Hamar M, Peřina J., Jr. Experimental multi-photon-resolving detector using a single avalanche photodiode. Eur. Phys. J. D. 2004;28:149–154. doi: 10.1140/epjd/e2003-00287-1. DOI
Avenhaus M, Laiho K, Chekhova MV, Silberhorn C. Accessing higher order correlations in quantum optical states by time multiplexing. Phys. Rev. Lett. 2010;104:063602. doi: 10.1103/PhysRevLett.104.063602. PubMed DOI
Sperling J, et al. Uncovering quantum correlations with time-multiplexed click detection. Phys. Rev. Lett. 2015;115:023601. doi: 10.1103/PhysRevLett.115.023601. PubMed DOI
Mosset A, Devaux F, Fanjoux G, Lantz E. Direct experimental characterization of the Bose-Einstein distribution of spatial fluctuations of spontaneous parametric down-conversion. Eur. Phys. J. D - Atomic, Molecular, Opt. Plasma Phys. 2004;28:447–451.
Blanchet J-L, Devaux F, Furfaro L, Lantz E. Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. Phys. Rev. Lett. 2008;101:233604. doi: 10.1103/PhysRevLett.101.233604. PubMed DOI
Peřina J, Jr., Hamar M, Michálek V, Haderka O. Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera. Phys. Rev. A. 2012;85:023816. doi: 10.1103/PhysRevA.85.023816. DOI
Peřina J, Jr., Michálek V, Haderka O. Noise reduction in photon counting by exploiting spatial correlations. Phys. Rev. Appl. 2017;8:044018. doi: 10.1103/PhysRevApplied.8.044018. DOI
Machulka R, et al. Spatial properties of twin-beam correlations at low- to high-intensity transition. Opt. Express. 2014;22:13374–13379. doi: 10.1364/OE.22.013374. PubMed DOI
Peřina J, Jr., Haderka O, Allevi A, Bondani M. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams. Appl. Phys. Lett. 2014;104:041113. doi: 10.1063/1.4863433. DOI
Ramilli M, et al. Photon-number statistics with silicon photomultipliers. J. Opt. Soc. Am. B. 2010;27:852–862. doi: 10.1364/JOSAB.27.000852. DOI
Paris MGA. Joint generation of identical squeezed states. Phys. Lett. A. 1997;225:28. doi: 10.1016/S0375-9601(96)00870-5. DOI
Arkhipov II, Peřina J, Jr., Peřina J, Miranowicz A. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes. Phys. Rev. A. 2016;94:013807. doi: 10.1103/PhysRevA.94.013807. DOI
Arkhipov II, Peřina J, Jr., Svozilík J, Miranowicz A. Nonclassicality invariant of general two-mode Gaussian states. Sci. Rep. 2016;6:26523. doi: 10.1038/srep26523. PubMed DOI PMC
Glauber RJ. Coherent and incoherent states of the radiation field. Phys. Rev. 1963;131:2766–2788. doi: 10.1103/PhysRev.131.2766. DOI
Sudarshan ECG. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963;10:277. doi: 10.1103/PhysRevLett.10.277. DOI
Shchukin E, Richter T, Vogel W. Nonclassicality criteria in terms of moments. Phys. Rev. A. 2005;71:011802(R). doi: 10.1103/PhysRevA.71.011802. DOI
Miranowicz A, Bartkowiak M, Wang X, Liu X-Y, Nori F. Testing nonclassicality in multimode fields: A unified derivation of classical inequalities. Phys. Rev. A. 2010;82:013824. doi: 10.1103/PhysRevA.82.013824. DOI
Bartkowiak M, et al. Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses. Phys. Rev. A. 2011;83:053814. doi: 10.1103/PhysRevA.83.053814. DOI
Lee CT. Higher-order criteria for nonclassical effects in photon statistics. Phys. Rev. A. 1990;41:1721–1723. doi: 10.1103/PhysRevA.41.1721. PubMed DOI
Peřina J, Křepelka J. Joint probability distribution and entanglement in optical parametric processes. Opt. Commun. 2011;284:4941. doi: 10.1016/j.optcom.2011.06.036. DOI
Peřina J, Křepelka J. Multimode description of spontaneous parametric down-conversion. J. Opt. B: Quantum Semiclass. Opt. 2005;7:246. doi: 10.1088/1464-4266/7/9/003. DOI
Arkhipov II, Peřina J, Jr., Peřina J, Miranowicz A. Comparative study of nonclassicality, entanglement, and dimensionality of multimode noisy twin beams. Phys. Rev. A. 2015;91:033837. doi: 10.1103/PhysRevA.91.033837. DOI
Plenio MB. Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 2005;95:090503. doi: 10.1103/PhysRevLett.95.090503. PubMed DOI
Harder G, et al. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics. Phys. Rev. Lett. 2016;116:143601. doi: 10.1103/PhysRevLett.116.143601. PubMed DOI