Enhancing entanglement detection of quantum optical frequency combs via stimulated emission
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08874S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
30911031
PubMed Central
PMC6434034
DOI
10.1038/s41598-019-41545-y
PII: 10.1038/s41598-019-41545-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We investigate the performance of a certain nonclassicality identifier, expressed via integrated second-order intensity moments of optical fields, in revealing bipartite entanglement of quantum-optical frequency combs (QOFCs), which are generated in both spontaneous and stimulated parametric down-conversion processes. We show that, by utilizing that nonclassicality identifier, one can well identify the entanglement of the QOFC directly from the experimentally measured intensity moments without invoking any state reconstruction techniques or homodyne detection. Moreover, we demonstrate that the stimulated generation of the QOFC improves the entanglement detection of these fields with the nonclassicality identifier. Additionally, we show that the nonclassicality identifier can be expressed in a factorized form of detectors quantum efficiencies and the number of modes, if the QOFC consists of many copies of the same two-mode twin beam. As an example, we apply the nonclassicality identifier to two specific types of QOFC, where: (i) the QOFC consists of many independent two-mode twin beams with non-overlapped spatial frequency modes, and (ii) the QOFC contains entangled spatial frequency modes which are completely overlapped, i.e., each mode is entangled with all the remaining modes in the system. We show that, in both cases, the nonclassicality identifier can reveal bipartite entanglement of the QOFC including noise, and that it becomes even more sensitive for the stimulated processes.
Department of Physics Korea University Seoul 02841 Republic of Korea
Faculty of Physics Adam Mickiewicz University PL 61 614 Poznan Poland
Zobrazit více v PubMed
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935;47:777. doi: 10.1103/PhysRev.47.777. DOI
Schrödinger E. Die gegenwartige Situation in der Quantenmechanik. Naturwissenschaften. 1935;23:807. doi: 10.1007/BF01491891. DOI
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
Ekert AK. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991;67:661–663. doi: 10.1103/PhysRevLett.67.661. PubMed DOI
Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev. Mod. Phys. 2011;74:145–195. doi: 10.1103/RevModPhys.74.145. DOI
Long GL, Liu XS. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 2002;65:032302. doi: 10.1103/PhysRevA.65.032302. DOI
Deng F-G, Long GL, Liu X-S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 2003;68:042317. doi: 10.1103/PhysRevA.68.042317. DOI
Zhang W, et al. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 2017;118:220501. doi: 10.1103/PhysRevLett.118.220501. PubMed DOI
Chen S-S, Zhou L, Zhong W, Sheng Y-B. Three-step three-party quantum secure direct communication. Sci. China-Phys. Mech. Astron. 2018;61:090312. doi: 10.1007/s11433-018-9224-5. DOI
Niu P-H, et al. Measurement-device-independent quantum communication without encryption. Sci. Bull. 2018;63:1345–1350. doi: 10.1016/j.scib.2018.09.009. PubMed DOI
Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat. Photon. 2011;5:222. doi: 10.1038/nphoton.2011.35. DOI
Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev. Mod. Phys. 2009;81:865. doi: 10.1103/RevModPhys.81.865. DOI
Cai X-D, et al. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 2015;114:110504. doi: 10.1103/PhysRevLett.114.110504. PubMed DOI
Sheng Y-B, Zhou L. Distributed secure quantum machine learning. Sci. Bull. 2017;62:1025–1029. doi: 10.1016/j.scib.2017.06.007. PubMed DOI
Menicucci NC, et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 2006;97:110501. doi: 10.1103/PhysRevLett.97.110501. PubMed DOI
Menicucci NC, Flammia ST, Pfister O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 2008;101:130501. doi: 10.1103/PhysRevLett.101.130501. PubMed DOI
Ukai R, et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys. Rev. Lett. 2011;106:240504. doi: 10.1103/PhysRevLett.106.240504. PubMed DOI
Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 2011;107:030505. doi: 10.1103/PhysRevLett.107.030505. PubMed DOI
Roslund J, de Araújo RM, Jiang S, Fabre C, Treps N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 2014;8:109. doi: 10.1038/nphoton.2013.340. DOI
Cai Y, et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 2017;8:15645. doi: 10.1038/ncomms15645. PubMed DOI PMC
Kok P, et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007;79:135–174. doi: 10.1103/RevModPhys.79.135. DOI
Hyllus P, Eisert J. Optimal entanglement witnesses for continuous-variable systems. New J. Phys. 2006;8:51. doi: 10.1088/1367-2630/8/4/051. DOI
van Loock P, Furusawa A. Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A. 2003;67:052315. doi: 10.1103/PhysRevA.67.052315. DOI
Shchukin E, Vogel W. Nonclassical moments and their measurement. Phys. Rev. A. 2005;72:043808. doi: 10.1103/PhysRevA.72.043808. DOI
Shchukin E, Vogel W. Inseparability criteria for continuous bipartite quantum states. Phys. Rev. Lett. 2005;95:230502. doi: 10.1103/PhysRevLett.95.230502. PubMed DOI
Miranowicz A, Piani M. Comment on “inseparability criteria for continuous bipartite quantum states”. Phys. Rev. Lett. 2006;97:058901. doi: 10.1103/PhysRevLett.97.058901. PubMed DOI
Hillery M, Zubairy MS. Entanglement conditions for two-mode states. Phys. Rev. Lett. 2006;96:050503. doi: 10.1103/PhysRevLett.96.050503. PubMed DOI
Serafini A. Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 2006;96:110402. doi: 10.1103/PhysRevLett.96.110402. PubMed DOI
Miranowicz A, Piani M, Horodecki P, Horodecki R. Inseparability criteria based on matrices of moments. Phys. Rev. A. 2009;80:052303. doi: 10.1103/PhysRevA.80.052303. DOI
Miranowicz A, Bartkowiak M, Wang X, Liu X-Y, Nori F. Testing nonclassicality in multimode fields: A unified derivation of classical inequalities. Phys. Rev. A. 2010;82:013824. doi: 10.1103/PhysRevA.82.013824. DOI
Vogel W. Nonclassical correlation properties of radiation fields. Phys. Rev. Lett. 2008;100:013605. doi: 10.1103/PhysRevLett.100.013605. PubMed DOI
Arkhipov II, Peřina J, Haderka O, Michálek V. Experimental detection of nonclassicality of single-mode fields via intensity moments. Opt. Express. 2016;24:29496–29505. doi: 10.1364/OE.24.029496. PubMed DOI
Peřina J, Jr., Arkhipov II, Michálek V, Haderka O. Nonclassicality and entanglement criteria for bipartite optical fields characterized by quadratic detectors. Phys. Rev. A. 2017;96:043845. doi: 10.1103/PhysRevA.96.043845. DOI
Kühn B, Vogel W, Mraz M, Köhnke S, Hage B. Anomalous quantum correlations of squeezed light. Phys. Rev. Lett. 2017;118:153601. doi: 10.1103/PhysRevLett.118.153601. PubMed DOI
Haderka O, Peřina J, Jr., Hamar M, Peřina J. Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion. Phys. Rev. A. 2005;71:033815. doi: 10.1103/PhysRevA.71.033815. DOI
Peřina J, Jr., Haderka O, Michálek V, Hamar M. State reconstruction of a multimode twin beam using photodetection. Phys. Rev. A. 2013;87:022108. doi: 10.1103/PhysRevA.87.022108. DOI
Sperling J, et al. Detector-independent verification of quantum light. Phys. Rev. Lett. 2017;118:163602. doi: 10.1103/PhysRevLett.118.163602. PubMed DOI PMC
Arkhipov II, Peřina J., Jr Experimental identification of non-classicality of noisy twin beams and other related two-mode states. Sci. Rep. 2018;8:1460. doi: 10.1038/s41598-018-19634-1. PubMed DOI PMC
Simon R. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 2000;84:2726. doi: 10.1103/PhysRevLett.84.2726. PubMed DOI
Duan L-M, Giedke G, Cirac JI, Zoller P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 2000;84:2722. doi: 10.1103/PhysRevLett.84.2722. PubMed DOI
Gerke S, et al. Full multipartite entanglement of frequency-comb Gaussian states. Phys. Rev. Lett. 2015;114:050501. doi: 10.1103/PhysRevLett.114.050501. PubMed DOI
Gerke S, Vogel W, Sperling J. Numerical construction of multipartite entanglement witnesses. Phys. Rev. X. 2018;8:031047.
Arkhipov II. Characterization of nonclassicality of gaussian states initially generated in optical spontaneous parametric processes by means of induced stimulated emission. Phys. Rev. A. 2018;98:023839. doi: 10.1103/PhysRevA.98.023839. DOI
Kwon H, Tan KC, Volkoff T, Jeong H. Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 2019;122:040503. doi: 10.1103/PhysRevLett.122.040503. PubMed DOI
Agarwal, G. Quantum Optics (Cambridge University Press, Cambridge, UK, 2013).
Peřina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, Dordrecht, 1991).
Lee SK, Han NS, Yoon TH, Cho M. Frequency comb single-photon interferometry. Commun. Phys. 2018;1:51. doi: 10.1038/s42005-018-0051-2. DOI
Hall JL. Nobel lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 2006;78:1279–1295. doi: 10.1103/RevModPhys.78.1279. PubMed DOI
Hänsch TW. Nobel lecture: Passion for precision. Rev. Mod. Phys. 2006;78:1297–1309. doi: 10.1103/RevModPhys.78.1297. DOI
Boyd, R. W. Chapter 2 - wave-equation description of nonlinear optical interactions. In Boyd, R. W. (ed.) Nonlinear Optics (Third Edition), 69–133 (Academic Press, Burlington, 2008).
Arkhipov II. Complete identification of nonclassicality of Gaussian states via intensity moments. Phys. Rev. A. 2018;98:021803. doi: 10.1103/PhysRevA.98.021803. DOI
Arkhipov II, Peřina J, Jr., Peřina J, Miranowicz A. Comparative study of nonclassicality, entanglement, and dimensionality of multimode noisy twin beams. Phys. Rev. A. 2015;91:033837. doi: 10.1103/PhysRevA.91.033837. DOI
Peřina J, Křepelka J. Multimode description of spontaneous parametric down-conversion. J. Opt. B: Quant. Semiclass. Opt. 2005;7:246–252. doi: 10.1088/1464-4266/7/9/003. DOI
Peřina J, Jr., Michálek V, Haderka O. Higher-order sub-Poissonian-like nonclassical fields: Theoretical and experimental comparison. Phys. Rev. A. 2017;96:033852. doi: 10.1103/PhysRevA.96.033852. DOI
Lee CT. Measure of the nonclassicality of nonclassical states. Phys. Rev. A. 1991;44:R2775. doi: 10.1103/PhysRevA.44.R2775. PubMed DOI
Arkhipov II, Peřina J, Jr., Svozilík J, Miranowicz A. Nonclassicality invariant of general two-mode Gaussian states. Sci. Rep. 2016;6:26523. doi: 10.1038/srep26523. PubMed DOI PMC
Avella A, et al. Separable Schmidt modes of a nonseparable state. Phys. Rev. A. 2014;89:023808. doi: 10.1103/PhysRevA.89.023808. DOI
Ou ZY, Lu YJ. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 1999;83:2556–2559. doi: 10.1103/PhysRevLett.83.2556. DOI
Kuklewicz CE, Wong FNC, Shapiro JH. Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett. 2006;97:223601. doi: 10.1103/PhysRevLett.97.223601. PubMed DOI
Neergaard-Nielsen JS, Nielsen BM, Takahashi H, Vistnes AI, Polzik ES. High purity bright single photon source. Opt. Express. 2007;15:7940–7949. doi: 10.1364/OE.15.007940. PubMed DOI
Wang F-Y, Shi B-S, Guo G-C. Observation of time correlation function of multimode two-photon pairs on a rubidium D2 line. Opt. Lett. 2008;33:2191–2193. doi: 10.1364/OL.33.002191. PubMed DOI
Scholz M, Koch L, Benson O. Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett. 2009;102:063603. doi: 10.1103/PhysRevLett.102.063603. PubMed DOI