Enhancing entanglement detection of quantum optical frequency combs via stimulated emission

. 2019 Mar 25 ; 9 (1) : 5090. [epub] 20190325

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30911031

Grantová podpora
18-08874S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 30911031
PubMed Central PMC6434034
DOI 10.1038/s41598-019-41545-y
PII: 10.1038/s41598-019-41545-y
Knihovny.cz E-zdroje

We investigate the performance of a certain nonclassicality identifier, expressed via integrated second-order intensity moments of optical fields, in revealing bipartite entanglement of quantum-optical frequency combs (QOFCs), which are generated in both spontaneous and stimulated parametric down-conversion processes. We show that, by utilizing that nonclassicality identifier, one can well identify the entanglement of the QOFC directly from the experimentally measured intensity moments without invoking any state reconstruction techniques or homodyne detection. Moreover, we demonstrate that the stimulated generation of the QOFC improves the entanglement detection of these fields with the nonclassicality identifier. Additionally, we show that the nonclassicality identifier can be expressed in a factorized form of detectors quantum efficiencies and the number of modes, if the QOFC consists of many copies of the same two-mode twin beam. As an example, we apply the nonclassicality identifier to two specific types of QOFC, where: (i) the QOFC consists of many independent two-mode twin beams with non-overlapped spatial frequency modes, and (ii) the QOFC contains entangled spatial frequency modes which are completely overlapped, i.e., each mode is entangled with all the remaining modes in the system. We show that, in both cases, the nonclassicality identifier can reveal bipartite entanglement of the QOFC including noise, and that it becomes even more sensitive for the stimulated processes.

Zobrazit více v PubMed

Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935;47:777. doi: 10.1103/PhysRev.47.777. DOI

Schrödinger E. Die gegenwartige Situation in der Quantenmechanik. Naturwissenschaften. 1935;23:807. doi: 10.1007/BF01491891. DOI

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

Ekert AK. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991;67:661–663. doi: 10.1103/PhysRevLett.67.661. PubMed DOI

Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev. Mod. Phys. 2011;74:145–195. doi: 10.1103/RevModPhys.74.145. DOI

Long GL, Liu XS. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 2002;65:032302. doi: 10.1103/PhysRevA.65.032302. DOI

Deng F-G, Long GL, Liu X-S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 2003;68:042317. doi: 10.1103/PhysRevA.68.042317. DOI

Zhang W, et al. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 2017;118:220501. doi: 10.1103/PhysRevLett.118.220501. PubMed DOI

Chen S-S, Zhou L, Zhong W, Sheng Y-B. Three-step three-party quantum secure direct communication. Sci. China-Phys. Mech. Astron. 2018;61:090312. doi: 10.1007/s11433-018-9224-5. DOI

Niu P-H, et al. Measurement-device-independent quantum communication without encryption. Sci. Bull. 2018;63:1345–1350. doi: 10.1016/j.scib.2018.09.009. PubMed DOI

Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat. Photon. 2011;5:222. doi: 10.1038/nphoton.2011.35. DOI

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev. Mod. Phys. 2009;81:865. doi: 10.1103/RevModPhys.81.865. DOI

Cai X-D, et al. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 2015;114:110504. doi: 10.1103/PhysRevLett.114.110504. PubMed DOI

Sheng Y-B, Zhou L. Distributed secure quantum machine learning. Sci. Bull. 2017;62:1025–1029. doi: 10.1016/j.scib.2017.06.007. PubMed DOI

Menicucci NC, et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 2006;97:110501. doi: 10.1103/PhysRevLett.97.110501. PubMed DOI

Menicucci NC, Flammia ST, Pfister O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 2008;101:130501. doi: 10.1103/PhysRevLett.101.130501. PubMed DOI

Ukai R, et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys. Rev. Lett. 2011;106:240504. doi: 10.1103/PhysRevLett.106.240504. PubMed DOI

Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R, Pfister O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 2011;107:030505. doi: 10.1103/PhysRevLett.107.030505. PubMed DOI

Roslund J, de Araújo RM, Jiang S, Fabre C, Treps N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 2014;8:109. doi: 10.1038/nphoton.2013.340. DOI

Cai Y, et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 2017;8:15645. doi: 10.1038/ncomms15645. PubMed DOI PMC

Kok P, et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007;79:135–174. doi: 10.1103/RevModPhys.79.135. DOI

Hyllus P, Eisert J. Optimal entanglement witnesses for continuous-variable systems. New J. Phys. 2006;8:51. doi: 10.1088/1367-2630/8/4/051. DOI

van Loock P, Furusawa A. Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A. 2003;67:052315. doi: 10.1103/PhysRevA.67.052315. DOI

Shchukin E, Vogel W. Nonclassical moments and their measurement. Phys. Rev. A. 2005;72:043808. doi: 10.1103/PhysRevA.72.043808. DOI

Shchukin E, Vogel W. Inseparability criteria for continuous bipartite quantum states. Phys. Rev. Lett. 2005;95:230502. doi: 10.1103/PhysRevLett.95.230502. PubMed DOI

Miranowicz A, Piani M. Comment on “inseparability criteria for continuous bipartite quantum states”. Phys. Rev. Lett. 2006;97:058901. doi: 10.1103/PhysRevLett.97.058901. PubMed DOI

Hillery M, Zubairy MS. Entanglement conditions for two-mode states. Phys. Rev. Lett. 2006;96:050503. doi: 10.1103/PhysRevLett.96.050503. PubMed DOI

Serafini A. Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 2006;96:110402. doi: 10.1103/PhysRevLett.96.110402. PubMed DOI

Miranowicz A, Piani M, Horodecki P, Horodecki R. Inseparability criteria based on matrices of moments. Phys. Rev. A. 2009;80:052303. doi: 10.1103/PhysRevA.80.052303. DOI

Miranowicz A, Bartkowiak M, Wang X, Liu X-Y, Nori F. Testing nonclassicality in multimode fields: A unified derivation of classical inequalities. Phys. Rev. A. 2010;82:013824. doi: 10.1103/PhysRevA.82.013824. DOI

Vogel W. Nonclassical correlation properties of radiation fields. Phys. Rev. Lett. 2008;100:013605. doi: 10.1103/PhysRevLett.100.013605. PubMed DOI

Arkhipov II, Peřina J, Haderka O, Michálek V. Experimental detection of nonclassicality of single-mode fields via intensity moments. Opt. Express. 2016;24:29496–29505. doi: 10.1364/OE.24.029496. PubMed DOI

Peřina J, Jr., Arkhipov II, Michálek V, Haderka O. Nonclassicality and entanglement criteria for bipartite optical fields characterized by quadratic detectors. Phys. Rev. A. 2017;96:043845. doi: 10.1103/PhysRevA.96.043845. DOI

Kühn B, Vogel W, Mraz M, Köhnke S, Hage B. Anomalous quantum correlations of squeezed light. Phys. Rev. Lett. 2017;118:153601. doi: 10.1103/PhysRevLett.118.153601. PubMed DOI

Haderka O, Peřina J, Jr., Hamar M, Peřina J. Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion. Phys. Rev. A. 2005;71:033815. doi: 10.1103/PhysRevA.71.033815. DOI

Peřina J, Jr., Haderka O, Michálek V, Hamar M. State reconstruction of a multimode twin beam using photodetection. Phys. Rev. A. 2013;87:022108. doi: 10.1103/PhysRevA.87.022108. DOI

Sperling J, et al. Detector-independent verification of quantum light. Phys. Rev. Lett. 2017;118:163602. doi: 10.1103/PhysRevLett.118.163602. PubMed DOI PMC

Arkhipov II, Peřina J., Jr Experimental identification of non-classicality of noisy twin beams and other related two-mode states. Sci. Rep. 2018;8:1460. doi: 10.1038/s41598-018-19634-1. PubMed DOI PMC

Simon R. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 2000;84:2726. doi: 10.1103/PhysRevLett.84.2726. PubMed DOI

Duan L-M, Giedke G, Cirac JI, Zoller P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 2000;84:2722. doi: 10.1103/PhysRevLett.84.2722. PubMed DOI

Gerke S, et al. Full multipartite entanglement of frequency-comb Gaussian states. Phys. Rev. Lett. 2015;114:050501. doi: 10.1103/PhysRevLett.114.050501. PubMed DOI

Gerke S, Vogel W, Sperling J. Numerical construction of multipartite entanglement witnesses. Phys. Rev. X. 2018;8:031047.

Arkhipov II. Characterization of nonclassicality of gaussian states initially generated in optical spontaneous parametric processes by means of induced stimulated emission. Phys. Rev. A. 2018;98:023839. doi: 10.1103/PhysRevA.98.023839. DOI

Kwon H, Tan KC, Volkoff T, Jeong H. Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 2019;122:040503. doi: 10.1103/PhysRevLett.122.040503. PubMed DOI

Agarwal, G. Quantum Optics (Cambridge University Press, Cambridge, UK, 2013).

Peřina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, Dordrecht, 1991).

Lee SK, Han NS, Yoon TH, Cho M. Frequency comb single-photon interferometry. Commun. Phys. 2018;1:51. doi: 10.1038/s42005-018-0051-2. DOI

Hall JL. Nobel lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 2006;78:1279–1295. doi: 10.1103/RevModPhys.78.1279. PubMed DOI

Hänsch TW. Nobel lecture: Passion for precision. Rev. Mod. Phys. 2006;78:1297–1309. doi: 10.1103/RevModPhys.78.1297. DOI

Boyd, R. W. Chapter 2 - wave-equation description of nonlinear optical interactions. In Boyd, R. W. (ed.) Nonlinear Optics (Third Edition), 69–133 (Academic Press, Burlington, 2008).

Arkhipov II. Complete identification of nonclassicality of Gaussian states via intensity moments. Phys. Rev. A. 2018;98:021803. doi: 10.1103/PhysRevA.98.021803. DOI

Arkhipov II, Peřina J, Jr., Peřina J, Miranowicz A. Comparative study of nonclassicality, entanglement, and dimensionality of multimode noisy twin beams. Phys. Rev. A. 2015;91:033837. doi: 10.1103/PhysRevA.91.033837. DOI

Peřina J, Křepelka J. Multimode description of spontaneous parametric down-conversion. J. Opt. B: Quant. Semiclass. Opt. 2005;7:246–252. doi: 10.1088/1464-4266/7/9/003. DOI

Peřina J, Jr., Michálek V, Haderka O. Higher-order sub-Poissonian-like nonclassical fields: Theoretical and experimental comparison. Phys. Rev. A. 2017;96:033852. doi: 10.1103/PhysRevA.96.033852. DOI

Lee CT. Measure of the nonclassicality of nonclassical states. Phys. Rev. A. 1991;44:R2775. doi: 10.1103/PhysRevA.44.R2775. PubMed DOI

Arkhipov II, Peřina J, Jr., Svozilík J, Miranowicz A. Nonclassicality invariant of general two-mode Gaussian states. Sci. Rep. 2016;6:26523. doi: 10.1038/srep26523. PubMed DOI PMC

Avella A, et al. Separable Schmidt modes of a nonseparable state. Phys. Rev. A. 2014;89:023808. doi: 10.1103/PhysRevA.89.023808. DOI

Ou ZY, Lu YJ. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 1999;83:2556–2559. doi: 10.1103/PhysRevLett.83.2556. DOI

Kuklewicz CE, Wong FNC, Shapiro JH. Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett. 2006;97:223601. doi: 10.1103/PhysRevLett.97.223601. PubMed DOI

Neergaard-Nielsen JS, Nielsen BM, Takahashi H, Vistnes AI, Polzik ES. High purity bright single photon source. Opt. Express. 2007;15:7940–7949. doi: 10.1364/OE.15.007940. PubMed DOI

Wang F-Y, Shi B-S, Guo G-C. Observation of time correlation function of multimode two-photon pairs on a rubidium D2 line. Opt. Lett. 2008;33:2191–2193. doi: 10.1364/OL.33.002191. PubMed DOI

Scholz M, Koch L, Benson O. Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett. 2009;102:063603. doi: 10.1103/PhysRevLett.102.063603. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...