• This record comes from PubMed

Nonclassicality Invariant of General Two-Mode Gaussian States

. 2016 May 23 ; 6 () : 26523. [epub] 20160523

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

We introduce a new quantity for describing nonclassicality of an arbitrary optical two-mode Gaussian state which remains invariant under any global photon-number preserving unitary transformation of the covariance matrix of the state. The invariant naturally splits into an entanglement monotone and local-nonclassicality quantifiers applied to the reduced states. This shows how entanglement can be converted into local squeezing and vice versa. Twin beams and their transformations at a beam splitter are analyzed as an example providing squeezed light. An extension of this approach to pure three-mode Gaussian states is given.

See more in PubMed

Glauber R. J. Quantum Theory of Optical Coherence: Selected Papers and Lectures (Wiley-VCH, Weinheim, 2007).

Peřina J., Hradil Z. & Jurčo B. Quantum Optics and Fundamentals of Physics (Kluwer, Dordrecht, 1994).

Mandel L. & Wolf E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).

Agarwal G. Quantum Optics (Cambridge University Press, Cambridge, UK, 2013).

Glauber R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963).

Sudarshan E. C. G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963).

Miranowicz A. et al. Statistical mixtures of states can be more quantum than their superpositions: Comparison of nonclassicality measures for single-qubit states. Phys. Rev. A 91, 042309 (2015).

Shchukin E., Richter T. & Vogel W. Nonclassicality criteria in terms of moments. Phys. Rev. A 71, 011802(R) (2005).

Richter T. & Vogel W. Nonclassicality of quantum states: A hierarchy of observable conditions. Phys. Rev. Lett. 89, 283601 (2002). PubMed

Asbóth J. K., Calsamiglia J. & Ritsch H. Squeezing as an irreducible resource. Phys. Rev. Lett. 94, 173602 (2005). PubMed

Vidal G. & Werner R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

Miranowicz A., Bartkowiak M., Wang X., Liu Y. X. & Nori F. Testing nonclassicality in multimode fields: A unified derivation of classical inequalities. Phys. Rev. A 82, 013824 (2010).

Bartkowiak M. et al. Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses. Phys. Rev. A 83, 053814 (2011).

Allevi A. et al. Characterizing the nonclassicality of mesoscopic optical twin-beam states. Phys. Rev. A 88, 063807 (2013).

Filip R. & Lachman L. Hierarchy of feasible nonclassicality criteria for sources of photons. Phys. Rev. A 88, 043827 (2013).

Vogel W. Nonclassical correlation properties of radiation fields. Phys. Rev. Lett. 100, 013605 (2008). PubMed

Ryl S. et al. Unified nonclassicality criteria. Phys. Rev. A 92, 011801(R) (2015).

Verma A. & Pathak A. Generalized structure of higher order nonclassicality. Phys. Lett. A 374, 1009 (2010).

Lvovsky A. I. & Raymer M. G. Continuous-variable optical quantum state tomography. Rev. Mod. Phys. 81, 299 (2009).

Peřina J. Jr., Haderka O., Michálek V. & Hamar M. State reconstruction of a multimode twin beam using photodetection. Phys. Rev. A 87, 022108 (2013).

Weedbrook C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

Nielsen M. A. & Chuang I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).

Horodecki R., Horodecki P., Horodecki M. & Horodecki K. Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009).

Polzik E. S., Carri J. & Kimble H. J. Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020 (1992). PubMed

Wolfgramm F. et al. Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010). PubMed

Braunstein S. L. Squeezing as an irreducible resource. Phys. Rev. A 71, 055801 (2005).

Killoran N., Cramer M. & Plenio M. B. Extracting entanglement from identical particles. Phys. Rev. Lett. 112, 150501 (2014). PubMed

Lee C. T. Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775 (1991). PubMed

Hillery M. Nonclassical distance in quantum optics. Phys. Rev. A 35, 725 (1987). PubMed

Peres A. Separability criterion for density matrices. Phys. Rev. Lett 77, 1413 (1996). PubMed

Horodecki P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997).

Marian P. & Marian T. A. Bures distance as a measure of entanglement for symmetric two-mode gaussian states. Phys. Rev. A 77, 062319 (2008).

Eisert J. & Plenio M. B. Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quantum Inform. 01, 479 (2003).

Adesso G. & Illuminati F. Gaussian measures of entanglement versus negativities: Ordering of two-mode gaussian states. Phys. Rev. A 72, 032334 (2005).

Arkhipov I. I., Peřina J. Jr., Peřina J. & Miranowicz A. Comparative study of nonclassicality, entanglement, and dimensionality of multimode noisy twin beams. Phys. Rev. A 91, 033837 (2015).

Vogel W. & Sperling J. Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014).

Adesso G., Serafini A. & Illuminati F. Multipartite entanglement in three-mode gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006).

Ge W., Tasgin M. E. & Zubairy M. S. Conservation relation of nonclassicality and entanglement for gaussian states in a beam splitter. Phys. Rev. A 92, 052328 (2015).

Svozilík J., Vallés A., Peřina J. Jr. & Torres J. P. Revealing hidden coherence in partially coherent light. Phys. Rev. Lett 115, 220501 (2015). PubMed

Peřina J. Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, Dordrecht, 1991).

Simon R. Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000). PubMed

Marian P., Marian T. A. & Scutaru H. Inseparability of mixed two-mode gaussian states generated with a SU (1, 1) interferometer. Journal of Physics A: Mathematical and General 34, 6969 (2001).

Plenio M. B. Logarithmic Negativity: A Full Entanglement Monotone That is not Convex. Phys. Rev. Lett. 95, 090503 (2005). PubMed

Olivares S. Quantum optics in the phase space. Eur. Phys. J. Special Topics 203, 3 (2012).

Paris M. G. A. Joint generation of identical squeezed states. Phys. Lett. A 225, 28 (1997).

Serafini A., Adesso G. & Illuminati F. Unitarily localizable entanglement of gaussian states. Phys. Rev. A. 71, 032349 (2005).

Braunstein S. L. Quantum error correction for communication with linear optics. Nature 394, 47 (1998).

van Loock P. & Braunstein S. L. Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482 (2000). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...