Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products

. 2018 Jan 24 ; 19 (2) : . [epub] 20180124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29364859

Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.

Zobrazit více v PubMed

Daglia M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012;23:174–181. doi: 10.1016/j.copbio.2011.08.007. PubMed DOI

Tapiero H., Tew K.D., Nguyen Ba G., Mathé G. Polyphenols: Do they play a role in the preventions of human pathologies? Biomed. Pharmacother. 2002;56:200–2007. doi: 10.1016/S0753-3322(02)00178-6. PubMed DOI

Manach C., Williamson G., Morand C., Scalbert A., Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S. PubMed

Petti S., Scully C. Polyphenols, oral health and disease: A review. J. Dent. 2009;37:413–423. doi: 10.1016/j.jdent.2009.02.003. PubMed DOI

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC

Wojdyło A., Oszmianski J., Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007;105:940–949. doi: 10.1016/j.foodchem.2007.04.038. DOI

Tripoli E., Gianmmanco M., Tabacchi G., Di Majo D., Giammanco S., La Guardia M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005;18:98–112. doi: 10.1079/NRR200495. PubMed DOI

El Gharras H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009;44:2512–2518. doi: 10.1111/j.1365-2621.2009.02077.x. DOI

Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000;1:2073S–2085S. doi: 10.1093/jn/130.8.2073S. PubMed DOI

Galanakis C.M., Castro-Muñoz R., Cassano A., Conidi C. Recovery of high-added-value compounds from food waste by membrane technology. In: Figoli A., Cassano A., Basile A., editors. Membrane Technologies for Biorefining. Woodhead Publishing; Cambridge, UK: 2016. pp. 189–215.

Castro-Muñoz R., Barragán-Huerta B.E., Fíla V., Denis P.C., Ruby-Figueroa R. Current role of membrane technology: From the treatment of agro-industrial by-products up to valorization of valuable compounds. Waste Biomass Valoriz. 2017:1–17. doi: 10.1007/s12649-017-0003-1. DOI

Castro-Muñoz R., Yáñez-Fernández J., Fíla V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016;213:753–762. doi: 10.1016/j.foodchem.2016.07.030. PubMed DOI

Moreira M.M., Morais S., Delerue-Matos C. Environment-friendly techniques for extraction of bioactive compounds from fruits. In: Grumezescu A.M., Holban A.M., editors. Soft Chemistry and Food Fermentation—Handbook of Food Bioengineering. Volume 3. Academic Press; London, UK: 2017. pp. 21–48.

Shilpi A., Shivhare U.S., Basu S. Supercritical CO2 extraction of compounds with antioxidant activity from fruits and vegetables waste—A review. Focus Mod. Food Ind. 2013;2:43–62.

Brianceau S., Turk M., Vitrac X., Vorobiev E. Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innov. Food Sci. Emerg. Technol. 2015;29:2–8. doi: 10.1016/j.ifset.2014.07.010. DOI

Barba F.J., Brianceau S., Turk M., Boussetta N., Vorobiev E. Effect of alternative physical treatments (Ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Technol. 2015;8:1139–1148. doi: 10.1007/s11947-015-1482-3. DOI

El Darra N., Grimi N., Vorobiev E., Louka N., Maroun R. Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food Bioprocess Technol. 2013;6:1281–1289. doi: 10.1007/s11947-012-0869-7. DOI

Liazid A., Guerrero R.F., Cantos E., Palma M., Barroso C.G. Microwave assisted extraction of anthocyanins from grape skins. Food Chem. 2011;124:1238–1243. doi: 10.1016/j.foodchem.2010.07.053. DOI

Bleve M., Ciurlia L., Erroi E., Lionetto G., Longo L., Rescio L., Schettino T., Vasapollo G. An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep. Purif. Technol. 2008;64:192–197. doi: 10.1016/j.seppur.2008.10.012. DOI

Pascual-Martí M. Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta. 2001;54:735–740. doi: 10.1016/S0039-9140(01)00319-8. PubMed DOI

Corrales M., García A.F., Butz P., Tauscher B. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 2009;90:415–421. doi: 10.1016/j.jfoodeng.2008.07.003. DOI

Rajha H.N., Ziegler W., Louka N., Hobaika Z., Vorobiev E., Boechzelt H.G., Maroun R.G. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction. Int. J. Mol. Sci. 2014;15:18640–18658. doi: 10.3390/ijms151018640. PubMed DOI PMC

Wang R.P., Chang Y., Tan Z.Y., Li F.F. A novel combined process for extracting, separating and recovering flavonoids from flos sophorae immaturus. Sep. Purif. Technol. 2017;172:422–432. doi: 10.1016/j.seppur.2016.08.038. DOI

Wong Paz J.E., Muñiz Márquez D.B., Martínez Ávila G.C.G., Belmares Cerda R.E., Aguilar C.N. Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason. Sonochem. 2014;22:474–481. doi: 10.1016/j.ultsonch.2014.06.001. PubMed DOI

Ledesma-Escobar C.A., Luque de Castro M.D. Towards a comprehensive exploitation of citrus. Trends Food Sci. Technol. 2014;39:63–75. doi: 10.1016/j.tifs.2014.07.002. DOI

Desai M., Parikh J., Parikh P.A. Extraction of natural products using microwaves as a heat source. Sep. Purif. Rev. 2010;39:1–32. doi: 10.1080/15422111003662320. DOI

Mendes M., Carvalho A.P., Magalhães J.M.C.S., Moreira M., Guido L., Gomes A.M., Delerue-Matos C. Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innov. Food Sci. Emerg. Technol. 2016;33:319–326. doi: 10.1016/j.ifset.2015.12.025. DOI

Herrero M., Plaza M., Cifuentes A., Ibáñez E. Extraction techniques for the determination of phenolic compounds in food. In: Pawliszyn J., editor. Comprehensive Sampling and Sample Preparation. Academic Press; Oxford, UK: 2012. pp. 159–180.

Chemat F., Rombaut N., Sicaire A.G., Meullemiestre A., Fabiano-Tixier A.S., Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A Review. Ultrason. Sonochem. 2017;34:540–560. doi: 10.1016/j.ultsonch.2016.06.035. PubMed DOI

Khoddami A., Wilkes M.A., Roberts T.H. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18:2328–2375. doi: 10.3390/molecules18022328. PubMed DOI PMC

Azwanida N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants. 2015;4:1–6. doi: 10.4172/2167-0412.1000196. DOI

Wijngaard H., Hossain M.B., Rai D.K., Brunton N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 2012;46:505–513. doi: 10.1016/j.foodres.2011.09.027. DOI

Vilkhu K., Mawson R., Simons L., Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008;9:161–169. doi: 10.1016/j.ifset.2007.04.014. DOI

Azmir J., Zaidul I.S.M., Rahman M.M., Sharif K.M., Mohamed A., Sahena F., Jahurul M.H.A., Ghafoor K., Norulaini N.A.N., Omar A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117:426–436. doi: 10.1016/j.jfoodeng.2013.01.014. DOI

Cho Y.J., Hong J.Y., Chun H.S., Lee S.K., Min H.Y. Ultrasonication-assisted extraction of resveratrol from grapes. J. Food Eng. 2006;77:725–730. doi: 10.1016/j.jfoodeng.2005.06.076. DOI

Corrales M., Toepfl S., Butz P., Knorr D., Tauscher B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 2008;9:85–91. doi: 10.1016/j.ifset.2007.06.002. DOI

Da Porto C., Porretto E., Decorti D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013;20:1076–1080. doi: 10.1016/j.ultsonch.2012.12.002. PubMed DOI

Rajha H.N., Boussetta N., Louka N., Maroun R.G., Vorobiev E. Effect of alternative physical pretreatments (pulsed electric field, high voltage electrical discharges and ultrasound) on the dead-end ultrafiltration of vine-shoot extracts. Sep. Purif. Technol. 2015;146:243–251. doi: 10.1016/j.seppur.2015.03.058. DOI

Ghafoor K., Park J., Choi Y.H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. Technol. 2010;11:485–490. doi: 10.1016/j.ifset.2010.01.013. DOI

Topal U., Sasaki M., Goto M., Hayakawa K. Extraction of lycopene from tomato skin with supercritical carbon dioxide: Effect of operating conditions and solubility analysis. J. Agric. Food Chem. 2006;54:5604–5610. doi: 10.1021/jf0606407. PubMed DOI

Mira B., Blasco M., Berna A., Subirats S. Supercritical CO2 extraction of essential oil from orange peel. Effect of operation conditions on the extract composition. J. Supercrit. Fluids. 1999;14:95–104. doi: 10.1016/S0896-8446(98)00111-9. DOI

Dechow F.J. Purification Techniques in Biotechnology. 3rd ed. Noyes Publications; Park Ridge, IL, USA: 1989.

Strathmann H. Membrane separation processes: Current relevance and future opportunities. AIChe J. 2001;47:1077–1087. doi: 10.1002/aic.690470514. DOI

Li J., Chase H.A. Applications of membrane techniques for purification of natural products. Biotechnol. Lett. 2010;32:601–608. doi: 10.1007/s10529-009-0199-7. PubMed DOI

Van der Bruggen B., Vandecasteele C., Van Gestel T., Doyen W., Leysen R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003;22:46–56. doi: 10.1002/ep.670220116. DOI

Moura Bernardes A. General aspects of membrane separation processes. In: Moura Bernardes A., Siqueira Rodrigues M.A., Zoppas Ferreira J., editors. Electrodyalisis and Water Reuse: Novel Approaches. Springer; London, UK: 2014. pp. 3–10.

Galanakis C.M. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border to nanofiltration. Trends Food Sci. Technol. 2015;42:44–63. doi: 10.1016/j.tifs.2014.11.005. DOI

Crespo J.G., Brazinha C. Membrane processing: Natural antioxidants from winemaking by-products. Filtr. Sep. 2010;47:32–35. doi: 10.1016/S0015-1882(10)70079-3. DOI

Galanakis C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012;26:68–87. doi: 10.1016/j.tifs.2012.03.003. DOI

Cassano A., Conidi C., Giorno L., Drioli E. Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 2013;248–249:185–193. doi: 10.1016/j.jhazmat.2013.01.006. PubMed DOI

Turano E., Curcio S., De Paola M.G., Calabrò V., Iorio G. An integrated centrifugation-ultrafiltration system in the treatment of olive mill wastewater. J. Membr. Sci. 2002;209:519–531. doi: 10.1016/S0376-7388(02)00369-1. DOI

Paraskeva C.A., Papadakis V.G., Tsarouchi E., Kanellopoulou D.G., Koutsoukos P.G. Membrane processing for olive mill wastewater fractionation. Desalination. 2007;213:218–229. doi: 10.1016/j.desal.2006.04.087. DOI

Garcia-Castello E., Cassano A., Criscuoli A., Conidi C., Drioli E. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 2010;44:3883–3892. doi: 10.1016/j.watres.2010.05.005. PubMed DOI

Bazzarelli F., Piacentini E., Poerio T., Mazzei R., Cassano A., Giorno L. Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J. Membr. Sci. 2016;497:402–409. doi: 10.1016/j.memsci.2015.09.049. DOI

Arvaniti E.C., Zagklis D.P., Papadakis V.G., Paraskeva C.A. High-Added value materials production from OMW: A technical and economical optimization. Int. J. Chem. Eng. 2012:1–7. doi: 10.1155/2012/607219. DOI

Romani A., Scardigli A., Pinelli P. An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. Eur. Food Res. Technol. 2017;243:1229–1238. doi: 10.1007/s00217-016-2835-5. DOI

Lattanzio V., Kroon P.A., Linsalata V., Cardinali A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Food. 2009;1:131–144. doi: 10.1016/j.jff.2009.01.002. DOI

Conidi C., Cassano A., Garcia-Castello E. Valorization of artichoke wastewaters by integrated membrane process. Water Res. 2014;48:363–374. doi: 10.1016/j.watres.2013.09.047. PubMed DOI

Conidi C., Rodriguez-Lopez A.D., Garcia-Castello E.M., Cassano A. Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep. Purif. Technol. 2015;144:153–161. doi: 10.1016/j.seppur.2015.02.025. DOI

Cassano A., Cabri W., Mombelli G., Peterlongo F., Giorno L. Recovery of bioactive compounds from artichoke brines by nanofiltration. Food Bioprod. Process. 2016;98:257–265. doi: 10.1016/j.fbp.2016.02.004. DOI

Braddock R.J. Handbook of Citrus By-Products and Processing Technology. John Wiley & Sons, Inc.; New York, NY, USA: 1999.

Simone S., Conidi C., Ursino C., Cassano A., Figoli A. Clarification of orange press liquors by PVDF hollow fiber membranes. Membranes. 2016;6:9. doi: 10.3390/membranes6010009. PubMed DOI PMC

Braddock R.J. Ultrafiltration and reverse osmosis recovery of limonene from citrus processing waste streams. J. Food Sci. 1982;47:946–948. doi: 10.1111/j.1365-2621.1982.tb12751.x. DOI

Cassano A., Conidi C., Ruby-Figueroa R. Recovery of flavonoids from orange press liquor by an integrated membrane process. Membranes. 2014;4:509–524. doi: 10.3390/membranes4030509. PubMed DOI PMC

Di Donna L., Iacopetta D., Cappello A.R., Gallucci G., Martello E., Fiorillo M., Dolce E., Sindona G. Hypocholesterolaemic activity of 3-hydroxy-3-methyl-glutaryl flavanones enriched fraction from bergamot fruit (Citrus bergamia): “In vivo” studies. J. Funct. Food. 2014;7:558–568. doi: 10.1016/j.jff.2013.12.029. DOI

Conidi C., Cassano A., Drioli E. A membrane based study for the recovery of polyphenols from bergamot juice. J. Membr. Sci. 2011;375:182–190. doi: 10.1016/j.memsci.2011.03.035. DOI

Conidi C., Cassano A. Recovery of phenolic compounds from bergamot juice by nanofiltration membranes. Desalination Water Treat. 2015;56:3510–3518. doi: 10.1080/19443994.2014.968219. DOI

Cassano A., Donato L., Drioli E. Ultrafiltration of kiwifruit juice: Operating parameters, juice quality and membrane fouling. J. Food Eng. 2007;79:613–621. doi: 10.1016/j.jfoodeng.2006.02.020. DOI

Astudillo-Castro C.L. Limiting flux and critical transmembrane pressure determination using an exponential model: The effect of concentration factor, temperature, and cross-flow velocity during casein micelle concentration by microfiltration. Ind. Eng. Chem. Res. 2015;54:414–425. doi: 10.1021/ie5033292. DOI

Díaz-Reinoso B., Moure A., Domínguez H., Parajó J.C. Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. J. Food Eng. 2009;91:587–593. doi: 10.1016/j.jfoodeng.2008.10.007. DOI

Todisco S., Tallarico P., Gupta B.B. Mass transfer and polyphenols retention in the clarification of black tea with ceramic membranes. Innov. Food Sci. Emerg. Technol. 2002;3:255–262. doi: 10.1016/S1466-8564(02)00046-2. DOI

Giacobbo A., Bernardes A.M., de Pinho M.N. Sequential pressure-driven membrane operations to recover and fractionate polyphenols and polysaccharides from second racking wine lees. Sep. Purif. Technol. 2017;173:49–54. doi: 10.1016/j.seppur.2016.09.007. DOI

Zirehpour A., Rahimpour A., Jahanshahi M. The filtration performance and efficiency of olive mill wastewater treatment by integrated membrane process. Desalination Water Treat. 2015;53:1254–1262. doi: 10.1080/19443994.2013.855884. DOI

Cheryan M. Ultrafiltration and Microfiltration Handbook. 2nd ed. CRC Press; Boca Raton, FL, USA: 1998.

Jiraratananon R., Chanachai A. A study of fouling in the ultrafiltration of passion fruit juice. J. Membr. Sci. 1996;111:39–48. doi: 10.1016/0376-7388(95)00270-7. DOI

Giacobbo A., Oliveira M., Duarte E.C.N.F., Mira H.M.C., Bernardes A.M., de Pinho M.N. Ultrafiltration based process for the recovery of polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 2013;48:438–444. doi: 10.1080/01496395.2012.725793. DOI

Patel T.M., Nath K. Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration. Korean J. Chem. Eng. 2014;31:1865–1876. doi: 10.1007/s11814-014-0139-7. DOI

Tsuru T., Sudoh T., Yoshioka T., Asaeda M. Nanofiltration in non-aqueous solutions by porous silica-zirconia membranes. J. Membr. Sci. 2001;185:253–261. doi: 10.1016/S0376-7388(00)00651-7. DOI

Bordenave N., Bruce R., Hamaker B.R., Ferruzzi M.G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food Funct. 2014;5:18–34. doi: 10.1039/C3FO60263J. PubMed DOI

Conidi C., Cassano A., Drioli E. Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 2012;90:867–874. doi: 10.1016/j.fbp.2012.07.005. DOI

Tylkowski B., Tsibranska I., Kochanova R., Peeva G., Marta G. Concentration of biologically active compounds extracted from Sideritis ssp. L. by nanofiltration. Food Bioprod. Process. 2011;89:307–314. doi: 10.1016/j.fbp.2010.11.003. DOI

Pinto P.C.R., Mota I.F., Loureiro J.M., Rodrigues A.E. Membrane performance and application of ultrafiltration and nanofiltration to ethanol/water extract of Eucalyptus bark. Sep. Purif. Technol. 2014;132:234–243. doi: 10.1016/j.seppur.2014.04.042. DOI

Conidi C., Cassano A., Caiazzo F., Drioli E. Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J. Food Eng. 2017;195:1–13. doi: 10.1016/j.jfoodeng.2016.09.017. DOI

Galanakis C.M., Markouli E., Gekas V. Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Sep. Purif. Technol. 2013;107:245–251. doi: 10.1016/j.seppur.2013.01.034. DOI

Liu D., Vorobiev E., Savoire R., Lanoisellé J.L. Intensification of polyphenols extraction from grape seeds by high voltage electrical discharges and extract concentration by dead-end ultrafiltration. Sep. Purif. Technol. 2011;81:134–140. doi: 10.1016/j.seppur.2011.07.012. DOI

Benítez F.J., Acero J.L., Leal A.I., González M. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater. J. Hazard. Mater. 2009;162:1438–1445. doi: 10.1016/j.jhazmat.2008.06.036. PubMed DOI

Kalbasi A., Cisneros-Zevallos L. Fractionation of monomeric and polymeric anthocyanins from Concord grape (Vitis labrusca L.) juice by membrane ultrafiltration. J. Agric. Food Chem. 2007;55:7036–7042. doi: 10.1021/jf0706068. PubMed DOI

Russo C. A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW) J. Membr. Sci. 2007;288:239–246. doi: 10.1016/j.memsci.2006.11.020. DOI

Cassano A., Conidi C., Drioli E. Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res. 2011;45:3197–3204. doi: 10.1016/j.watres.2011.03.041. PubMed DOI

Susanto H., Feng Y., Ulbricht M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng. 2009;91:333–340. doi: 10.1016/j.jfoodeng.2008.09.011. DOI

Boussu K., Vandecasteele C., Van der Bruggen B. Relation between membrane characteristics and performance in nanofiltration. J. Membr. Sci. 2008;310:51–65. doi: 10.1016/j.memsci.2007.10.030. DOI

Sotto A., Arsuaga J.M., Van der Bruggen B. Sorption of phenolic compounds on NF/RO membrane surfaces: Influence on membrane performance. Desalination. 2013;309:64–73. doi: 10.1016/j.desal.2012.09.023. DOI

Arsuaga J.M., López-Muñoz M.J., Sotto A. Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination. 2010;250:829–832. doi: 10.1016/j.desal.2008.11.051. DOI

Arsuaga J.M., Sotto A., López-Muñoz M.J., Braeken L. Influence of type and position of functional groups of phenolic compounds on NF/RO performance. J. Membr. Sci. 2011;372:380–386. doi: 10.1016/j.memsci.2011.02.020. DOI

Machado M.T.C., Mello B.C.B.S., Hubinger M.D. Study of alcoholic and aqueous extraction of pequi (Caryocar brasiliense Camb.) natural antioxidants and extracts concentration by nanofiltration. J. Food Eng. 2013;117:450–457. doi: 10.1016/j.jfoodeng.2012.12.007. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pervaporation-based membrane processes for the production of non-alcoholic beverages

. 2019 May ; 56 (5) : 2333-2344. [epub] 20190410

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...