Threatened species richness along a Himalayan elevational gradient: quantifying the influences of human population density, range size, and geometric constraints
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
IRP201559
University of Ostrava - International
PubMed
29415707
PubMed Central
PMC5803900
DOI
10.1186/s12898-018-0162-3
PII: 10.1186/s12898-018-0162-3
Knihovny.cz E-zdroje
- Klíčová slova
- Biodiversity conservation, Elevational gradient, Himalaya, Nepal, Threatened species,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- hustota populace MeSH
- lidé MeSH
- nadmořská výška * MeSH
- obratlovci fyziologie MeSH
- ohrožené druhy * MeSH
- rozšíření zvířat * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Nepál MeSH
BACKGROUND: A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. RESULTS: Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. CONCLUSIONS: In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.
Center for Conservation Biology Kathmandu Institute of Applied Sciences PO Box 23002 Kathmandu Nepal
Division of Biological Sciences and Wildlife Biology Program University of Montana Missoula MT USA
Zobrazit více v PubMed
Sarkar S, Pressey RL, Faith DP, Margules CR, Fuller T, Stoms DM, et al. Biodiversity conservation planning tools: present status and challenges for the future. Annu Rev Environ Resour. 2006;31:123–159. doi: 10.1146/annurev.energy.31.042606.085844. DOI
Margules CR, Pressey RL. Systematic conservation planning. Nature. 2000;405:243–253. doi: 10.1038/35012251. PubMed DOI
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Gärdenfors U, Hilton-Taylor C, Mace GM, Rodríguez JP. The application of IUCN Red List criteria at regional levels. Conserv Biol. 2001;15:1206–1212. doi: 10.1046/j.1523-1739.2001.00112.x. DOI
IUCN. IUCN 2014. The IUCN Red List of threatened species. Version 2014.2. IUCN; 2014. http://www.iucnredlist.org. Accessed 24 July 2014.
Purvis A, Gittleman JL, Cowlishaw G, Mace GM. Predicting extinction risk in declining species. Proc R Soc Lond B Biol Sci. 2000;267:1947–1952. doi: 10.1098/rspb.2000.1234. PubMed DOI PMC
Harcourt AH, Parks SA. Threatened primates experience high human densities: adding an index of threat to the IUCN Red List criteria. Biol Conserv. 2003;109:137–149. doi: 10.1016/S0006-3207(02)00146-5. DOI
Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2004;2:e197. doi: 10.1371/journal.pbio.0020197. PubMed DOI PMC
Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett. 2005;8:1138–1146. doi: 10.1111/j.1461-0248.2005.00824.x. PubMed DOI
Acharya KP, Vetaas OR, Birks HJB. Orchid species richness along Himalayan elevational gradients. J Biogeogr. 2011;38:1821–1833. doi: 10.1111/j.1365-2699.2011.02511.x. DOI
Baniya CB, Solhøy T, Gauslaa Y, Palmer MW. The elevation gradient of lichen species richness in Nepal. Lichenologist. 2010;42:83–96. doi: 10.1017/S0024282909008627. DOI
Brehm G, Colwell RK, Kluge J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob Ecol Biogeogr. 2007;16:205–219. doi: 10.1111/j.1466-8238.2006.00281.x. DOI
Colwell RK, Lees DC. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol. 2000;15:70–76. doi: 10.1016/S0169-5347(99)01767-X. PubMed DOI
Grau O, Grytnes J-A, Birks HJB. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeogr. 2007;34:1907–1915. doi: 10.1111/j.1365-2699.2007.01745.x. DOI
Jetz W, Rahbek C. Geometric constraints explain much of the species richness pattern in African birds. Proc Natl Acad Sci. 2001;98:5661–5666. doi: 10.1073/pnas.091100998. PubMed DOI PMC
Paudel PK, Sipos J. Conservation status affects elevational gradient in bird diversity in the Himalaya: a new perspective. Glob Ecol Conserv. 2014;2:338–348. doi: 10.1016/j.gecco.2014.10.012. DOI
MacArthur RH, Wilson EO. The theory of island biogeography. Princeton: Princeton University Press; 1967.
Hawkins BA, Diniz-Filho JAF. The mid-domain effect cannot explain the diversity gradient of Nearctic birds. Glob Ecol Biogeogr. 2002;11:419–426. doi: 10.1046/j.1466-822x.2002.00299.x. DOI
Cardelús CL, Colwell RK, Watkins JE. Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol. 2006;94:144–156. doi: 10.1111/j.1365-2745.2005.01052.x. DOI
Kluge J, Kessler M, Dunn RR. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr. 2006;15:358–371. doi: 10.1111/j.1466-822X.2006.00223.x. DOI
McCain CM, Grytnes J-A. Elevational gradients in species richness. In: Wiley, editor. Encycl. Life Sci. Chichester: Wiley; 2010. http://www.els.net/WileyCDA/ElsArticle/refId-a0022548.html. Accessed 7 Dec 2014.
Diniz-Filho JAF, De Sant’Ana CER, De Souza MC, Rangel TFLVB. Null models and spatial patterns of species richness in South American birds of prey. Ecol Lett. 2002;5:47–55. doi: 10.1046/j.1461-0248.2002.00289.x. DOI
Zapata FA, Gaston KJ, Chown SL. The mid-domain effect revisited. Am Nat. 2005;166:E144–E148. doi: 10.1086/491685. PubMed DOI
Pimm SL, Russell GJ, Gittleman JL, Brooks TM. The future of biodiversity. Sci AAAS Wkly Pap Ed. 1995;269:347–349. PubMed
Cincotta RP, Wisnewski J, Engelman R. Human population in the biodiversity hotspots. Nature. 2000;404:990–992. doi: 10.1038/35010105. PubMed DOI
Luck GW. A review of the relationships between human population density and biodiversity. Biol Rev. 2007;82:607–645. doi: 10.1111/j.1469-185X.2007.00028.x. PubMed DOI
Bhattarai KR, Vetaas OR, Grytnes JA. Fern species richness along a central Himalayan elevational gradient, Nepal. J Biogeogr. 2004;31:389–400. doi: 10.1046/j.0305-0270.2003.01013.x. DOI
Gaston KJ. Global patterns in biodiversity. Nature. 2000;405:220–227. doi: 10.1038/35012228. PubMed DOI
Gaston KJ, Blackburn TM. The spatial distribution of threatened species: macroscales and new world birds. Proc R Soc Lond B Biol Sci. 1996;263:235–240. doi: 10.1098/rspb.1996.0037. DOI
Paudel PK, Heinen JT. Think globally, act locally: on the status of the threatened fauna in the Central Himalaya of Nepal. Geoforum. 2015;64:192–195. doi: 10.1016/j.geoforum.2015.06.021. DOI
Paudel PK, Bhattarai BP, Kindlmann P. An overview of the biodiversity in nepal. In: Kindlmann P, editor. Himal. Biodivers. Chang. World. Dordrecht: Springer Netherlands; 2012. p. 1–40. Available from: http://link.springer.com/chapter/10.1007/978-94-007-1802-9_1. Accessed 10 Nov 2014. DOI
Primack RB, Paudel PK, Bhattarai BP. Conservation biology: a primer for Nepal. 1. Kathmandu: Dreamland Publication; 2013.
Bhattarai KR, Vetaas OR. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob Ecol Biogeogr. 2003;12:327–340. doi: 10.1046/j.1466-822X.2003.00044.x. DOI
McCain CM. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob Ecol Biogeogr. 2007;16:1–13. doi: 10.1111/j.1466-8238.2006.00263.x. DOI
CBS N. National population and housing census 2011. Natl. Rep. 2012.
Silverman BW. Density estimation for statistics and data analysis. Boca Raton: CRC press; 1992.
McCain CM. The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr. 2004;31:19–31. doi: 10.1046/j.0305-0270.2003.00992.x. DOI
Montgomery DC, Peck EA. Introduction to Linear regression analysis. 2. New York: Wiley-Interscience; 1992.
Pinheiro J, Bates DM. Mixed-effects models in S and S-plus. New York: Springer New York; 2000.
Pinheiro J, Bates D, DebRoy S, Sarkar D. The R core team: nlme: linear and nonlinear mixed effects models. R package version 3.1 90. 2008.
Wu Y, Colwell RK, Rahbek C, Zhang C, Quan Q, Wang C, et al. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J Biogeogr. 2013;40:2310–2323. doi: 10.1111/jbi.12177. DOI
Ohsawa M, Shakya PR, Numata M. Distribution and succession of west Himalayan forest types in the eastern part of the Nepal Himalaya. Mt Res Dev. 1986;6:143–157. doi: 10.2307/3673268. DOI
Connor EF, McCoy ED. The statistics and biology of the species–area relationship. Am Nat. 1979;113:791–833. doi: 10.1086/283438. DOI
MacArthur RH. Geographical ecology: patterns in the distribution of species. Princeton: Princeton University Press; 1984.
Shmida AVI, Wilson MV. Biological determinants of species diversity. J Biogeogr. 1985;12:1–20. doi: 10.2307/2845026. DOI
Paudel PK. Conservation biology of the Himalayas. Conserv Sci. 2013;1:55–57.
McCain CM. Elevational gradients in diversity of small mammals. Ecology. 2005;86(2):366–372. doi: 10.1890/03-3147. DOI
Cooper N, Bielby J, Thomas GH, Purvis A. Macroecology and extinction risk correlates of frogs. Glob Ecol Biogeogr. 2008;17:211–221. doi: 10.1111/j.1466-8238.2007.00355.x. DOI
Harris G, Pimm SL. Range size and extinction risk in forest birds. Conserv Biol. 2008;22:163–171. doi: 10.1111/j.1523-1739.2007.00798.x. PubMed DOI
Sekercioglu CH, Schneider SH, Fay JP, Loarie SR. Climate change, elevational range shifts, and bird extinctions. Conserv Biol. 2008;22:140–150. doi: 10.1111/j.1523-1739.2007.00852.x. PubMed DOI
Government of Nepal. Nepal population report 11. Central Bureau of Statistics; 2011.
Paudel PK, Heinen JT. Conservation planning in the Nepal Himalayas: effectively (re)designing reserves for heterogeneous landscapes. Appl Geogr. 2015;56:127–134. doi: 10.1016/j.apgeog.2014.11.018. DOI
Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI