Both central sympathoexcitation and peripheral angiotensin II-dependent vasoconstriction contribute to hypertension development in immature heterozygous Ren-2 transgenic rats
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34621032
DOI
10.1038/s41440-021-00775-2
PII: 10.1038/s41440-021-00775-2
Knihovny.cz E-zdroje
- Klíčová slova
- Ren-2 transgenic rats, angiotensin II, hypertension, intracerebroventricular, losartan,
- MeSH
- angiotensin II * MeSH
- hypertenze * MeSH
- krevní tlak fyziologie MeSH
- krysa rodu Rattus MeSH
- losartan farmakologie terapeutické užití MeSH
- potkani transgenní MeSH
- renin-angiotensin systém MeSH
- renin metabolismus MeSH
- vazokonstrikce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin II * MeSH
- losartan MeSH
- renin MeSH
Recently, we demonstrated that chronic blockade of the renin-angiotensin system (RAS) lowered the blood pressure (BP) of adult Ren-2 transgenic rats (TGR) mainly through the attenuation of central sympathoexcitation. However, the participation of central and peripheral mechanisms in the development of high BP in immature TGR remains unclear. In the present study, 6-week-old heterozygous TGR males were chronically treated with intracerebroventricular (ICV) or intraperitoneal (IP) infusions of the AT1 receptor inhibitor losartan (1 or 2 mg/kg/day) for 4 weeks. The influence of these treatments on sympathetic- and angiotensin II-dependent BP components (BP response to pentolinium or captopril, respectively) as well as on BP response to exogenous angiotensin II were determined to evaluate the participation of central and peripheral RAS in hypertension development. Chronic IP losartan administration (1 or 2 mg/kg/day) lowered the BP of immature TGR by reducing both sympathetic and angiotensin II-dependent BP components. The central action of IP-administered losartan was indicated by a reduced BP response to acute ICV angiotensin II injection. Chronic ICV administration of a lower losartan dose (1 mg/kg/day) reduced only the sympathetic BP component, whereas a higher ICV administered dose (2 mg/kg/day) was required to influence the angiotensin II-dependent BP component. Accordingly, chronic ICV losartan administration of 2 mg/kg/day (but not 1 mg/kg/day) attenuated the BP response to acute intravenous angiotensin II application. In conclusion, central sympathoexcitation seems to play an important role in hypertension development in immature TGR. Central sympathoexcitation is highly susceptible to inhibition by low doses of RAS-blocking agents, whereas higher doses also affect peripheral angiotensin II-dependent vasoconstriction.
Zobrazit více v PubMed
Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996;270:E919–29. PubMed
Brosnan MJ, Devlin AM, Clark JS, Mullins JJ, Dominiczak AF. Different effects of antihypertensive agents on cardiac and vascular hypertrophy in the transgenic rat line TGR(mRen2)27. Am J Hypertens. 1999;12:724–31. PubMed
Rakušan D, Kujal P, Kramer HJ, Husková Z, Vaňourková Z, Vernerová Z, et al. Persistent antihypertensive effect of aliskiren is accompanied by reduced proteinuria and normalization of glomerular area in Ren-2 transgenic rats. Am J Physiol Ren Physiol. 2010;299:F758–66.
Vaněčková I, Řezáčová L, Kuneš J, Zicha J. Moderate additive effects of endothelin receptor A blockade in Ren-2 transgenic rats subjected to various types of RAS blockade. Life Sci. 2016;159:127–34. PubMed
Vaněčková I, Dobešová Z, Kuneš J, Zicha J. The effects of repeated delivery of angiotensin II A PubMed
Dampney RA, Polson JW, Potts PD, Hirooka Y, Horiuchi J. Functional organization of brain pathways subserving the baroreceptor reflex: studies in conscious animals using immediate early gene expression. Cell Mol Neurobiol. 2003;23:597–616. PubMed
Paton JF, Wang S, Polson JW, Kasparov S. Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. J Mol Med. 2008;86:705–10. PubMed
Tsai CY, Poon YY, Chan JYH, Chan SHH. Baroreflex functionality in the eye of diffusion tensor imaging. J Physiol. 2019;597:41–55. PubMed
Dupont AG, Légat L. GABA is a mediator of brain AT PubMed
Ito S, Sved AF. Blockade of angiotensin receptors in rat rostral ventrolateral medulla removes excitatory vasomotor tone. Am J Physiol. 1996;270:R1317–23. PubMed
Veerasingham SJ, Raizada MK. Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharm. 2003;139:191–202. https://doi.org/10.1038/sj.bjp.0705262 DOI
Muratani H, Averill DB, Ferrario CM. Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. Am J Physiol. 1991;260:R977–84. PubMed
Muratani H, Ferrario CM, Averill DB. Ventrolateral medulla in spontaneously hypertensive rats: role of angiotensin II. Am J Physiol. 1993;264:R388–95. PubMed
Tsai CY, Su CH, Baudrie V, Laude D, Weng JC, Chang AY, et al. Visualizing oxidative stress-induced depression of cardiac vagal baroreflex by MRI/DTI in a mouse neurogenic hypertension model. Neuroimage. 2013;82:190–9. PubMed
Su CH, Tsai CY, Chang AY, Chan JY, Chan SH. MRI/DTI of the brain stem reveals reversible and irreversible disruption of the baroreflex neural circuits: clinical implications. Theranostics. 2016;6:837–48. PubMed PMC
Lebrun CJ, Blume A, Herdegen T, Möllenhoff E, Unger T. Complex activation of inducible transcription factors in the brain of normotensive and spontaneously hypertensive rats following central angiotensin II administration. Regul Pept. 1996;66:19–23. PubMed
Chan JY, Chen WC, Lee HY, Chan SH. Elevated Fos expression in the nucleus tractus solitarii is associated with reduced baroreflex response in spontaneously hypertensive rats. Hypertension. 1998;32:939–44. PubMed
Chan JY, Wang LL, Lee HY, Chan SH. Augmented upregulation by c-fos of angiotensin subtype 1 receptor in nucleus tractus solitarii of spontaneously hypertensive rats. Hypertension. 2002;40:335–41. PubMed
Diz DI, Garcia-Espinosa MA, Gallagher PE, Ganten D, Ferrario CM, Averill DB. Angiotensin-(1-7) and baroreflex function in nucleus tractus solitarii of (mRen2)27 transgenic rats. J Cardiovasc Pharmacol. 2008;51:542–8. PubMed PMC
Isa K, Arnold AC, Westwood BM, Chappell MC, Diz DI. Angiotensin-converting enzyme inhibition, but not AT PubMed PMC
Nautiyal M, Shaltout HA, de Lima DC, do Nascimento K, Chappell MC, Diz DI. Central angiotensin-(1-7) improves vagal function independent of blood pressure in hypertensive (mRen2)27 rats. Hypertension. 2012;60:1257–65. PubMed
Řezáčová L, Hojná S, Kopkan L, Rauchová H, Kadlecová M, Zicha J, et al. Role of angiotensin II in chronic blood pressure control of heterozygous Ren-2 transgenic rats: peripheral vasoconstriction versus central sympathoexcitation. Biomed Pharmacother. 2019;116:108996. PubMed
Berecek KH, Okuno T, Nagahama S, Oparil S. Altered vascular reactivity and baroreflex sensitivity induced by chronic central administration of captopril in the spontaneously hypertensive rat. Hypertension. 1983;5:689–700. PubMed
Berecek KH, Kirk KA, Nagahama S, Oparil S. Sympathetic function in spontaneously hypertensive rats after chronic administration of captopril. Am J Physiol. 1987;252:H796–806. PubMed
Wilson KM, Magargal W, Berecek KH. Long-term captopril treatment. Angiotensin II receptors and responses. Hypertension. 1988;11(Suppl I):I148–52. PubMed
Nishimura Y, Xu T, Jöhren O, Häuser W, Saavedra JM. The angiotensin AT PubMed
Leenen FH, Yuan B. Prevention of hypertension by irbesartan in Dahl S rats relates to central angiotensin II type 1 receptor blockade. Hypertension. 2001;37:981–4. PubMed
Zicha J, Kuneš J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–82. PubMed
Dahl LK, Knudsen KD, Heine MA, Leitl GJ. Effects of chronic excess salt ingestion. Modification of experimental hypertension in the rat by variations in the diet. Circ Res. 1968;22:11–8. PubMed
Zicha J, Byšková E, Kuneš J, Pohlová I, Jelínek J. Sodium pump activity in young and adult salt hypertensive Dahl rats. Klin Wochenschr. 1987;65(Suppl 8):76–81. PubMed
Dobešová Z, Kuneš J, Zicha J. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: ontogenetic and F2 hybrid studies. J Hypertens. 2002;20:945–55. PubMed
Heijnen BF, Peutz-Kootstra CJ, Mullins JJ, Janssen BJ, Struijker-Boudier HA. Transient renin-angiotensin system stimulation in an early stage of life causes sustained hypertension in rats. J Hypertens. 2011;29:2369–80. PubMed
Harrap SB, Van der Merwe WM, Griffin SA, Macpherson F, Lever AF. Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension. 1990;16:603–14. PubMed
Zicha J, Dobešová Z, Behuliak M, Pintérová M, Kuneš J, Vaněčková I. Nifedipine-sensitive blood pressure component in hypertensive models characterized by high activity of either sympathetic nervous system or renin-angiotensin system. Physiol Res. 2014;63:13–26. PubMed
Averill DB, Matsumura K, Ganten D, Ferrario CM. Role of area postrema in transgene hypertension. Hypertension. 1996;27:591–7. PubMed
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Burlington, MA: Elsevier Academic Press; 2005.
Minami N, Imai Y, Hashimoto J, Abe K. Contribution of vascular nitric oxide to basal blood pressure in conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Clin Sci. 1995;89:177–82.
Zicha J, Dobešová Z, Kuneš J. Late blood pressure reduction in SHR subjected to transient captopril treatment in youth: possible mechanisms. Physiol Res. 2008;57:495–8. PubMed
Behuliak M, Bencze M, Polgárová K, Kuneš J, Vaněčková I, Zicha J. Hemodynamic response to gabapentin in conscious spontaneously hypertensive rats. Hypertension. 2018;72:676–85. PubMed
Vavřínová A, Behuliak M, Bencze M, Vodička M, Ergang P, Vaněčková I, et al. Sympathectomy-induced blood pressure reduction in adult normotensive and hypertensive rats is counteracted by enhanced cardiovascular sensitivity to vasoconstrictors. Hypertens Res. 2019;42:1872–82. PubMed
Seltzer A, Bregonzio C, Armando I, Baiardi G, Saavedra JM. Oral administration of an AT PubMed
Kawano Y, Yoshida K, Matsuoka H, Omae T. Chronic effects of central and systemic administration of losartan on blood pressure and baroreceptor reflex in spontaneously hypertensive rats. Am J Hypertens. 1994;7:536–42. PubMed
Okuno T, Nagahama S, Lindheimer MD, Oparil S. Attenuation of the development of spontaneous hypertension in rats by chronic central administration of captopril. Hypertension. 1983;5:653–62. PubMed
Aileru AA, Logan E, Callahan M, Ferrario CM, Ganten D, Diz DI. Alterations in sympathetic ganglionic transmission in response to angiotensin II in (mRen2)27 transgenic rats. Hypertension. 2004;43:270–5. PubMed
Thybo NK, Korsgaard N, Mulvany MJ. Morphology and function of mesenteric resistance arteries in transgenic rats with low-renin hypertension. J Hypertens. 1992;10:1191–6. PubMed
Struijker-Boudier HA, van Essen H, Fazzi G, De Mey JG, Qiu HY, Lévy BI. Disproportional arterial hypertrophy in hypertensive mRen-2 transgenic rats. Hypertension. 1996;28:779–84. PubMed
Teisman AC, Pinto YM, Buikema H, Flesch M, Böhm M, Paul M, et al. Dissociation of blood pressure reduction from end-organ damage in TGR(mREN2)27 transgenic hypertensive rats. J Hypertens. 1998;16:1759–65. PubMed
Rossi GP, Cavallin M, Belloni AS, Mazzocchi G, Nussdorfer GG, Pessina AC, et al. Aortic smooth muscle cell phenotypic modulation and fibrillar collagen deposition in angiotensin II-dependent hypertension. Cardiovasc Res. 2002;55:178–89. PubMed
Ding J, Yu M, Jiang J, Luo Y, Zhang Q, Wang S, et al. Angiotensin II decreases endothelial nitric oxide synthase phosphorylation via AT PubMed PMC
Arnet UA, Novosel D, Barton M, Noll G, Ganten D, Lüscher TF. Endothelial dysfunction in the aorta of transgenic rats harboring the mouse Ren-2 gene. Endothelium. 1999;6:175–84. PubMed
Dampney RA, Li YW, Hirooka Y, Potts P, Polson JW. Use of c-fos functional mapping to identify the central baroreceptor reflex pathway: advantages and limitations. Clin Exp Hypertens. 1995;17:197–208. PubMed
Lohmeier TE, Lohmeier JR, Warren S, May PJ, Cunningham JT. Sustained activation of the central baroreceptor pathway in angiotensin hypertension. Hypertension. 2002;39:550–6. PubMed
Altered Balance between Vasoconstrictor and Vasodilator Systems in Experimental Hypertension