Blood pressure reduction induced by chronic intracerebroventricular or peroral clonidine administration in rats with salt-dependent or angiotensin II-dependent hypertension

. 2022 Dec 16 ; 71 (6) : 763-770. [epub] 20221125

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36426892

The agonists of alpha(2)-adrenergic receptors such as clonidine, rilmenidine or monoxidine are known to lower blood pressure (BP) through a reduction of brain sympathetic outflow but their chronic antihypertensive effects in rats with low-renin or high-renin forms of experimental hypertension were not studied yet. Moreover, there is no comparison of mechanisms underlying BP reduction elicited by chronic peroral (po) or intracerebroventricular (icv) clonidine treatment. Male salt-sensitive Dahl rats fed 4% NaCl diet and Ren-2 transgenic rats were treated with clonidine administered either in the drinking fluid (0.5 mg/kg/day po) or as the infusion into lateral brain ventricle (0.1 mg/kg/day icv) for 4 weeks. Basal BP and the contributions of renin-angiotensin system (captopril 10 mg/kg iv) or sympathetic nervous system (pentolinium 5 mg/kg iv) to BP maintenance were determined in conscious cannulated rats at the end of the study. Both peroral and intracerebroventricular clonidine treatment lowered BP to the same extent in either rat model. However, in both models chronic clonidine treatment reduced sympathetic BP component only in rats treated intracerebroventricularly but not in perorally treated animals. In contrast, peroral clonidine treatment reduced angiotensin II-dependent vasoconstriction in Ren-2 transgenic rats, whereas it lowered residual blood pressure in Dahl rats. In conclusions, our results indicate different mechanisms of antihypertensive action of clonidine when administered centrally or systemically.

Zobrazit více v PubMed

van Zwieten PA. The renaissance of centrally acting antihypertensive drugs. J Hypertens. 1999;17(Suppl 3):S15–S21. doi: 10.3109/10641969909061015. PubMed DOI

Vongpatanasin W, Kario K, Atlas SA, Victor RG. Central sympatholytic drugs. J Clin Hypertens (Greenwich) 2011;13:658–661. doi: 10.1111/j.1751-7176.2011.00509.x. PubMed DOI PMC

Smits JF, Struyker-Boudier HA. Regional hemodynamic effects of rilmenidine and clonidine in the conscious spontaneously hypertensive rat. Fundam Clin Pharmacol. 1991;5:651–661. doi: 10.1111/j.1472-8206.1991.tb00755.x. PubMed DOI

Cechetto DF, Kline RL. Effect of rilmenidine on arterial pressure and urinary output in the spontaneously hypertensive rat. Eur J Pharmacol. 1997;325:47–55. doi: 10.1016/S0014-2999(97)00098-8. PubMed DOI

Sannajust F, Julien C, Barrès C, Cerutti C, Koenig-Bérard E, Sassard J. Cardiovascular effects of rilmenidine, a new alpha 2-adrenoceptor agonist, and clonidine in conscious spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 1989;16:837–848. doi: 10.1111/j.1440-1681.1989.tb01523.x. PubMed DOI

Mestivier D, Dabiré H, Safar M, Chau NP. Use of nonlinear methods to assess effects of clonidine on blood pressure in spontaneously hypertensive rats. J Appl Physiol. 1998;84:1795–1800. doi: 10.1152/jappl.1998.84.5.1795. PubMed DOI

Lim K, Jackson KL, Burke SL, Head GA. The Effects of rilmenidine and perindopril on arousal blood pressure during 24 hour recordings in SHR. PLoS One. 2016;11:e0168425. doi: 10.1371/journal.pone.0168425. PubMed DOI PMC

Sannajust F, Cerutti C, Koenig-Bérard E, Sassard J. Influence of anaesthesia on the cardiovascular effects of rilmenidine and clonidine in spontaneously hypertensive rats. Br J Pharmacol. 1992;105:542–548. doi: 10.1111/j.1476-5381.1992.tb09016.x. PubMed DOI PMC

Nurminen ML, Culman J, Haass M, Chung O, Unger T. Effect of moxonidine on blood pressure and sympathetic tone in conscious spontaneously hypertensive rats. Eur J Pharmacol. 1998;362:61–67. doi: 10.1016/S0014-2999(98)00726-2. PubMed DOI

Ma XJ, Shen FM, Liu AJ, Shi KY, Wu YL, Su DF. Clonidine, moxonidine, folic acid, and mecobalamin improve baroreflex function in stroke-prone, spontaneously hypertensive rats. Acta Pharmacol Sin. 2007;28:1550–1558. doi: 10.1111/j.1745-7254.2007.00644.x. PubMed DOI

Wang JL, Wang L, Wu ZT, Yuan WJ, Su DF, Ni X, Yan JJ, Wang WZ. Low dose of moxonidine within the rostral ventrolateral medulla improves the baroreflex sensitivity control of sympathetic activity in hypertensive rat. Acta Pharmacol Sin. 2009;30:1594–1600. doi: 10.1038/aps.2009.165. PubMed DOI PMC

Fujita M, Ando K, Kawarazaki H, Kawarasaki C, Muraoka K, Ohtsu H, Shimizu H, Fujita T. Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease. Hypertension. 2012;59:105–112. doi: 10.1161/HYPERTENSIONAHA.111.182923. PubMed DOI

Honda N, Hirooka Y, Ito K, Matsukawa R, Shinohara K, Kishi T, Yasukawa K, Utsumi H, Sunagawa K. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure. J Hypertens. 2013;31:2300–2308. doi: 10.1097/HJH.0b013e328364a2a1. PubMed DOI

Jin HK, Yang RH, Wyss JM, Chen YF, Oparil S. Intrahypothalamic clonidine infusion prevents NaCl-sensitive hypertension. Hypertension. 1991;18:224–229. doi: 10.1161/01.HYP.18.2.224. PubMed DOI

Huang BS, Leenen FH. Brain “ouabain” mediates the sympathoexcitatory and hypertensive effects of high sodium intake in Dahl salt-sensitive rats. Circ Res. 1994;74:586–595. doi: 10.1161/01.RES.74.4.586. PubMed DOI

Huang BS, Leenen FH. Both brain angiotensin II and “ouabain” contribute to sympathoexcitation and hypertension in Dahl S rats on high salt intake. Hypertension. 1998;32:1028–1033. doi: 10.1161/01.HYP.32.6.1028. PubMed DOI

Vaněčková I, Dobešová Z, Kuneš J, Zicha J. The effects of repeated delivery of angiotensin II AT1 receptor antisense on distinct vasoactive systems in Ren-2 transgenic rats: young vs adult animals. Hypertens Res. 2012;35:761–768. doi: 10.1038/hr.2012.29. PubMed DOI

Řezáčová L, Hojná S, Kopkan L, Rauchová H, Kadlecová M, Zicha J, Vaněčková I. Role of angiotensin II in chronic blood pressure control of heterozygous Ren-2 transgenic rats: Peripheral vasoconstriction versus central sympathoexcitation. Biomed Pharmacother. 2019;116:108996. doi: 10.1016/j.biopha.2019.108996. PubMed DOI

Řezáčová L, Vaněčková I, Hojná S, Vavřínová A, Valovič P, Rauchová H, Behuliak M, Zicha J. Both central sympathoexcitation and peripheral angiotensin II-dependent vasoconstriction contribute to hypertension development in immature heterozygous Ren-2 transgenic rats. Hypertens Res. 2022;45:414–423. doi: 10.1038/s41440-021-00775-2. PubMed DOI

Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press; Burlington, MA: 2005.

Minami N, Imai Y, Hashimoto J, Abe K. Contribution of vascular nitric oxide to basal blood pressure in conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Clin Sci (Lond) 1995;89:177–182. doi: 10.1042/cs0890177. PubMed DOI

Dobešová Z, Kuneš J, Zicha J. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: ontogenetic and F2 hybrid studies. J Hypertens. 2002;20:945–955. doi: 10.1097/00004872-200205000-00030. PubMed DOI

Mark AL. Sympathetic neural contribution to salt-induced hypertension in Dahl rats. Hypertension. 1991;17(Suppl I):I86–I90. doi: 10.1161/01.HYP.17.1_Suppl.I86. PubMed DOI

Zicha J, Dobešová Z, Kuneš J. Relative deficiency of nitric oxide-dependent vasodilation in salt-hypertensive Dahl rats: the possible role of superoxide anions. J Hypertens. 2001;19:247–254. doi: 10.1097/00004872-200102000-00011. PubMed DOI

Averill DB, Matsumura K, Ganten D, Ferrario CM. Role of area postrema in transgene hypertension. Hypertension. 1996;27:591–597. doi: 10.1161/01.HYP.27.3.591. PubMed DOI

Kanagy NL. α2-adrenergic receptor signalling in hypertension. Clin Sci (Lond) 2005;109:431–437. doi: 10.1042/CS20050101. PubMed DOI

Villalón CM, Albarrán-Juárez JA, Lozano-Cuenca J, Pertz HH, Görnemann T, Centurión D. Pharmacological profile of the clonidine-induced inhibition of vasodepressor sensory outflow in pithed rats: correlation with α2A/2C adrenoceptors. Br J Pharmacol. 2008;154:51–59. https://doi.org/10.1038/bjp.2008.250 https://doi.org/10.1038/bjp.2008.49. PubMed DOI PMC

Figueroa XF, Poblete MI, Boric MP, Mendizábal VE, Adler-Graschinsky E, Huidobro-Toro JP. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial α2-adrenoceptor activation. Br J Pharmacol. 2001;134:957–968. doi: 10.1038/sj.bjp.0704320. PubMed DOI PMC

Soares de Moura RS, Leão MC, Castro Resende AC, Moreira CF, Sena KM, Silveira SS, Lima AF, Nunes FR, Mesquita Ferreira AG. Actions of L-NAME and methylene blue on the hypotensive effects of clonidine and rilmenidine in the anesthetized rat. J Cardiovasc Pharmacol. 2000;35:791–795. doi: 10.1097/00005344-200005000-00017. PubMed DOI

Bruck H, Gössl M, Spitthöver R, Schäfers RF, Kohnle M, Philipp T, Wenzel RR. The nitric oxide synthase inhibitor L-NMMA potentiates noradrenaline-induced vasoconstriction: effects of the α2-receptor antagonist yohimbine. J Hypertens. 2001;19:907–911. doi: 10.1097/00004872-200105000-00011. PubMed DOI

Hermann D, Schlereth T, Vogt T, Birklein F. Clonidine induces nitric oxide- and prostaglandin-mediated vasodilation in healthy human skin. J Appl Physiol. 2005;99:2266–2270. doi: 10.1152/japplphysiol.00271.2005. PubMed DOI

d’Uscio LV, Barton M, Shaw S, Moreau P, Lüscher TF. Structure and function of small arteries in salt-induced hypertension: effects of chronic endothelin-subtype-A-receptor blockade. Hypertension. 1997;30:905–911. doi: 10.1161/01.HYP.30.4.905. PubMed DOI

Zicha J, Dobešová Z, Kuneš J, Vaněčková I. Chronic endothelin A receptor blockade attenuates contribution of sympathetic nervous system to salt hypertension development in adult but not in young Dahl rats. Acta Physiol (Oxf) 2012;205:124–32. doi: 10.1111/j.1748-1716.2011.02395.x. PubMed DOI

Vaněčková I, Kramer HJ, Bäcker A, Vernerová Z, Opočenský M, Červenka L. Early endothelin-A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats. Hypertension. 2005;46:969–974. doi: 10.1161/01.HYP.0000173426.06832.b5. PubMed DOI

Vaněčková I, Kramer HJ, Bäcker A, Schejbalová S, Vernerová Z, Eis V, Opočenský M, Dvořák P, Červenka L. Early-onset endothelin receptor blockade in hypertensive heterozygous Ren-2 rats. Vascul Pharmacol. 2006;45:163–170. doi: 10.1016/j.vph.2006.05.003. PubMed DOI

Behuliak M, Pintérová M, Kuneš J, Zicha J. Vasodilator efficiency of endogenous prostanoids, Ca2+-activated K+ channels and nitric oxide in rats with spontaneous, salt-dependent or NO-deficient hypertension. Hypertens Res. 2011;34:968–975. doi: 10.1038/hr.2011.82. PubMed DOI

Goto K, Kansui Y, Oniki H, Ohtsubo T, Matsumura K, Kitazono T. Upregulation of endothelium-derived hyperpolarizing factor compensates for the loss of nitric oxide in mesenteric arteries of Dahl salt-sensitive hypertensive rats. Hypertens Res. 2012;35:849–854. doi: 10.1038/hr.2012.36. PubMed DOI

Randall MD, March JE. Characterization of endothelium-dependent relaxations in mesenteries from transgenic hypertensive rats. Eur J Pharmacol. 1998;358:31–40. doi: 10.1016/S0014-2999(98)00584-6. PubMed DOI

Vaněčková I, Dobešová Z, Kuneš J, Vernerová Z, Zicha J. Endothelin A receptor blocker atrasentan lowers blood pressure by the reduction of nifedipine-sensitive calcium influx in Ren-2 transgenic rats fed a high-salt diet. J Hypertens. 2015;33:161–169. doi: 10.1097/HJH.0000000000000357. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...